MH370: cuatro años de búsquedas infructuosas

HJlNXnPCx_930x525

En 1883, el West Ridge, un buque construido en Escocia, de hierro, se hundió en el océano Índico cuando transportaba carbón del Reino Unido a la India. Los 28 tripulantes desaparecieron con la nave. El 19 de diciembre de 2015 fue encontrado a 4000 metros de profundidad a unas 1500 millas al oeste de la costa de Australia, aunque algunos expertos dudan de si los restos del hallazgo pertenecen a este barco o a cualquiera de otros dos, el Kooringa o el Lake Ontario que se desaparecieron en 1894 y 1897, respectivamente, en la misma zona.

Siete meses antes, a 22 millas del lugar donde se encontraron lo que queda de este buque de hierro, también aparecieron los de otro naufragio de un navío de 250 a 880 toneladas, de madera. Los investigadores dudan de si pertenecen al W. Gordon, que se perdió en su travesía de Escocia a Australia en 1877, o al Magdala, desaparecido cuando navegaba de Gales a Indonesia en 1892.

El hallazgo de estos pecios se produjo durante el rastreo de los fondos marinos que se ha realizado en búsqueda de cualquier vestigio del Boeing 777 del vuelo MH 370 de la compañía Malaysia Airlines, desaparecido el pasado 8 de marzo de 2014.

Un grupo de expertos asegura que el comandante del vuelo Zaharie Ahmad Shah, de 53 años, fue el responsable de la tragedia. Para evitar que los pasajeros se amotinaran despresurizó el avión y apagó el transponder justo en la frontera entre Malasia y Tailandia para que los controladores pensaran que la aeronave se encontraba en el país vecino y no se ocuparan del vuelo. Cuando pasó cerca de su ciudad natal, Penang, hizo un ligero viraje con la intención de contemplar por última vez aquella población. El comandante había ensayado las maniobras con un simulador que tenía en su casa. En relación con el motivo para justificar el suicidio, los expertos aducen desavenencias conyugales o motivaciones políticas en protesta por la detención del líder de la oposición en Malasia, Anwar Ibrahim. En realidad, este llamado grupo de expertos no aporta ninguna prueba y sus conjeturas no dejan de ser una hipótesis muy discutible.

Si, aún hoy, seguimos sin conocer el paradero del Boeing 777 de Malaysia Airlines que se perdió en 2014, parece casi seguro que hemos hallado al West Ridge cuyo capitán, John Arthurson, de Shetland, y su tripulación de 28 personas desaparecieron cuando transportaban carbón de Liverpool a Bombay hace 135 años. El pecio parece mostrar que su casco sufrió una fuerte explosión, algo frecuente en los buques carboneros debido a la acumulación de gases procedentes de su carga. Más de 300 barcos británicos que transportaban carbón se perdieron en tan solo ocho años, durante aquella época. Resulta difícil de entender que sepamos tanto del West Ridge y tan poco de la aeronave que operaba el vuelo MH 370.

El vuelo de las moscas

 

Una pequeña mosca como la Liriomyza sativae bate sus diminutas alas —de apenas 1,4 milímetros— 265 veces por segundo. Cuando se mantiene en suspensión las mueve unos 180 grados hacia adelante y atrás.

Esta mosca, conocida como minador del fríjol, vive de adulto entre 13 y 20 días, más las hembras que los machos. Si para los seres humanos la visión funciona a unas 60 imágenes por segundo, la de la mosca lo hace cuatro veces más rápido, de forma que lo que para nosotros es un movimiento continuo, para ella transcurre a cámara lenta. Eso, y el amplio campo de visión de la mayoría de estos insectos voladores, explica que resulte tan difícil alcanzarlos con un matamoscas, a pesar de que nuestro cerebro cuente con miles de millones de neuronas y en el suyo tan solo se alojen unas cien mil. Pero incluso con un cerebro tan reducido, el de la mosca está especializado en procesar información visual con extraordinaria rapidez y enviar, a través de su sistema nervioso, órdenes a sus músculos para responder ante cualquier amenaza que se le presente.

El vuelo de las moscas rompe todos los esquemas tradicionales de la aerodinámica que se aplica a las aeronaves. El coeficiente de sustentación de sus alas es del orden de 1,85, algo así como más de 10 veces el de un avión comercial en vuelo de crucero. Sin embargo esta extraordinaria capacidad para generar sustentación tiene un alto precio para los insectos ya que la resistencia al movimiento que ofrecen sus alas es también mucho más elevada. Aun así, una pequeña mosca dispone de suficientes reservas de energía como para volar durante una hora de forma ininterrumpida.

Las moscas mueven sus alas hacia adelante y atrás, aunque también hacia arriba y abajo. Son superficies muy flexibles por lo que en los dos movimientos generan sustentación: en las posiciones extremas el plano del ala pivota alrededor del borde de ataque, una rotación que efectúan gracias a sus músculos y la elasticidad de las membranas que constituyen las alas. El ángulo de ataque, en ambos recorridos, puede ser muy grande, del orden de 40 grados. En estas condiciones el ala de cualquier avión entraría en pérdida. La suyas no lo hacen y por eso alcanzan unos coeficientes de sustentación muy elevados. Y la razón por la que no entran en pérdida es debido a la rapidez de sus movimientos ya que este fenómeno (la entrada en pérdida de un ala) tarda un cierto tiempo en producirse y antes de que ocurra el ala del insecto ya ha finalizado su recorrido. Las moscas vuelan en lo que se denomina flujo aerodinámico no estacionario, en el que los torbellinos que se forman en el borde de ataque, antes de la entrada en pérdida de las alas, no llegan a desprenderse.

La Aerodinámica caracteriza el modo de vuelo en función del número de Reynolds, que es un parámetro que indica la relación que existe entre las fuerzas de inercia y las viscosas cuando un cuerpo se mueve en el seno de un fluido. El vuelo de los aviones comerciales se desarrolla con números de Reynolds que sobrepasan los centenares de millones, mientras que el de la Liriomyza sativae es de 40. Eso justifica que los torbellinos que se forman en los bordes de ataque de sus alas, cuando el aire las alcanza con un ángulo de ataque muy elevado, tarden en desprenderse más de lo que al ala le cuesta llegar al final de su carrera para iniciar el movimiento en el sentido opuesto. Como sus alas no llegan a entrar en pérdida consiguen mantener unos niveles de sustentación imposibles para otros voladores. Lo que a nosotros nos parece excepcional es el modo que tienen de volar los miles de millones de pequeños insectos que pueblan la Tierra. Constituyen además, la mayoría de los seres vivos que han adoptado el vuelo como modo de transporte.

No debería sorprendernos que nuestro futuro medio de transporte aéreo para movernos por el planeta, sea un vehículo ligero y de tamaño reducido, capaz de maniobrar de un modo similar al de los insectos.

El último medio de transporte: aeronaves eléctricas VTOL

Lilium_aircraft

De un punto situado en la parte oeste del centro de Nueva York, en Manhatann, a otro, en el aeropuerto internacional Kennedy (JFK), hay una distancia en línea recta de unos 19 kilómetros. Para efectuar un viaje entre estos dos puntos en taxi, el vehículo debe recorrer unos 26 kilómetros y tarda, en condiciones de tráfico normal, alrededor de 55 minutos. La carrera cuesta de 56 a 73 dólares. Según Lilium, el mismo trayecto, en una de las aeronaves que pretende poner en servicio a partir del año 2025, se hará en 5 minutos y, aunque empezará costando 36 dólares, espera que el precio se reduzca, a largo plazo, hasta unos 6 dólares; la reducción del coste se producirá, en mayor medida, por el abaratamiento de los aviones necesarios para prestar el servicio que se fabricarán en grandes series.
Taxis urbanos aéreos capaces de despegar y aterrizar verticalmente, con motores eléctricos, un elevado nivel de autonomía y posibilidad de llevar de 3 a 5 pasajeros, pueden ser una alternativa a los vehículos de servicio público terrestres en zonas urbanas muy congestionadas. La implantación de esta modalidad de transporte no exige la construcción de costosas y complejas infraestructuras, contribuiría a disminuir la contaminación atmosférica y la congestión vial, aminoraría el tiempo que las personas utilizan en moverse de un sitio a otro y permitiría que se incrementara la distancia entre las zonas de oficinas urbanas y residenciales, lo que abarataría el coste de la vivienda.
Pero, a corto y medio plazo… ¿es posible implantar estos servicios en los núcleos urbanos?
Uber Elevate trabaja para desarrollar este concepto de aviación urbana; para ello pretende asociarse con tres ciudades importantes que estén interesadas en la implantación del servicio de aerotaxis. En 2017 encontró las dos primeras, Dallas y Los Angeles, y en la actualidad sigue buscando la tercera. El plan es efectuar demostraciones a partir de 2020 y lanzar los primeros servicios comerciales de vuelos interurbanos en 2023, en dichas ciudades.
Para Uber, la implantación práctica de los aerotaxis se encuentra con una serie de barreras de entrada: el proceso de certificación, la tecnología de las baterías, la eficiencia del vehículo, las actuaciones de la aeronave, el control del tráfico aéreo, la seguridad, el ruido, las emisiones, la infraestructura de vertipuertos y el entrenamiento de los pilotos. A su juicio ninguna es insalvable a corto y medio plazo, por lo que el proyecto puede llevarse a cabo en unos cinco años.
En principio, los aerotaxis deberían operar trayectos de no más de 160 kilómetros y para reducir el tiempo de los desplazamientos (puerta a puerta) a más de la mitad, su velocidad de crucero se tendría que situar entre los 250 y 350 kilómetros por hora. La batería debería de tener una capacidad de almacenamiento de energía suficiente como para efectuar dos trayectos de ida y vuelta de 80 kilómetros; con dos despegues y aterrizajes; y, al completarlos, aún tendría que contar con una reserva de energía con la que la aeronave pudiese volar durante 30 minutos (requisito de la Federal Aviation Administration, FAA), además de la que necesite el avión para aterrizar en un vertipuerto alternativo (no es necesario que esté muy lejos); y en cada ciclo de trabajo, la batería no debería descargarse más allá del 20% de su capacidad, para garantizar una vida útil que resulte económica. Para cumplir con estos requisitos, un aeroplano cuya relación de sustentación/resistencia (L/D) sea del orden de 12/17 y pueda transportar 4 personas, necesitaría una batería con una densidad energética de 450 Wh/kg y capacidad de carga de 140 Kwh.
No existen, hoy en día, baterías comerciales con esas características. Los automóviles eléctricos Tesla, uno de los fabricantes de mayor prestigio en este sector, llevan baterías de hasta 100 Kwh y su densidad energética es de 254 Wh/kg.
El tiempo de carga de las baterías de estos futuros aviones es otro dato importante a tener en cuenta. Para disminuirlo, es preciso contar con un cargador de elevada potencia, aunque dicha disminución tiene un límite: la intensidad máxima que soportan las celdas de la batería. La batería de 100 Kwh —que puede montar el Tesla S— no acepta una intensidad de carga superior a la que proporciona una fuente de 120 Kw de potencia, con la que tarda unos 40 minutos en reponerse hasta el 80% de su capacidad máxima.
Aunque Sony ha anunciado que dispondrá de baterías (Li-S) de 400 Wh/kg en 2020 y el Department of Energy (DOE), en Estados Unidos, actualmente financia el desarrollo de un cargador de 350 Kw, las exigencias que plantean los aerotaxis eléctricos a estos dispositivos apenas se podrán cumplir en un plazo de tres o cuatro años.
Es muy posible que en vez de recurrir, exclusivamente, al almacenamiento de energía en baterías, los futuros aerotaxis eléctricos opten por configuraciones que incluyan pilas de combustible de hidrógeno para generar electricidad de forma continuada; junto con baterías de menor capacidad de carga y tamaño, para satisfacer la demanda energética en los momentos que sea muy exigente (despegue, aterrizaje, ascensos y otras maniobras). Aunque las pilas de combustible de hidrógeno parece que han sido relegadas a un segundo plano en el desarrollo de los vehículos eléctricos, el año 2017 ha marcado un hito importante, en el sentido de que esta tecnología ha iniciado una importante ganancia de cuota de mercado en el sector automovilístico. Las dificultades de almacenamiento de energía y tiempo de carga de las baterías podrían soslayarse con pilas de combustible de hidrógeno.
El planteamiento de Uber Elevate, en cuanto al futuro de los aerotaxis eléctricos a dos y cinco años vista, se sitúa en la frontera de lo que tecnológicamente parece viable, pero no imposible, por lo que cabe que tardemos un poco más en disponer de los servicios de estas aeronaves, cuya entrada en el mercado del transporte parece imparable. Las dificultades relacionadas con la certificación, aeronavegabilidad, licencias de vuelo y control del tráfico aéreo son bastante espinosas, pero no insalvables. Quizá por eso hay, en la actualidad, varias iniciativas para desarrollar aeronaves de estas características de entre las que a mí me llama poderosamente la atención la de Lilium.
Lilium fue fundadada en 2015 por Daniel Wiegand y tres ingenieros de la Universidad Técnica de Munich. La compañía se creó con el apoyo del Centro de Incubación de la Agencia Europea del Espacio en Bavaria. Según Wiegand Lilium nacía con la intención de diseñar y construir el «mejor medio de transporte posible para el siglo XXI… un avión privado de despegue y aterrizaje vertical ha sido el sueño de generaciones, el último medio de transporte».
Se trata de una máquina autónoma, capaz de llevarnos desde cualquier lugar a casi cualquier otro sitio, con una intervención mínima del piloto, con absoluta seguridad, una gran rapidez, economía y sin contaminar el medio ambiente. Para ello es preciso que pueda despegar y aterrizar verticalmente, es decir, que tenga las características de una aeronave VTOL (Vertical Take Off and Landing), navegue de modo inteligente siguiendo las instrucciones de un piloto al que no se le exija demasiada habilidad —merced a sus sistemas de control, sensores y en colaboración con nuevo sistema de gestión de tráfico aéreo— y sus propulsores se alimenten con energía eléctrica. Una importante innovación de la mayoría de estos nuevos proyectos es que la propulsión se genera mediante varias hélices, de forma que el fallo de algún motor no es crítico y en cualquier caso, casi todas irían dotadas de un paracaídas que actuaría como un último recurso para garantizar la integridad de los viajeros.
En el caso de Lilium la configuración de su aeronave es muy curiosa, con 36 propulsores, 24 en las alas y 12 en el morro, de control, empaquetados en grupos basculantes de tres unidades. Cada propulsor dispone de un motor eléctrico que mueve un soplante carenado (ducted fan). Estos grupos de tres propulsores, al girar sobre un eje transversal al aparato, hacen que la línea de empuje de cada uno de ellos adopte, de forma independiente, una dirección tal que, en sus dos posiciones más extremas, les permiten empujar la aeronave para que avance o levantarla; es decir, actúan como elementos que facilitan el vuelo horizontal, en cuyo caso el avión se sustenta con las alas, o sirven para elevar el aparato como si se tratara de un helicóptero. Con estos mecanismos es posible gobernar la aeronave y no necesita controles aerodinámicos —como los alerones, flaps, timón de profundidad o timón de dirección.
Desde su fundación, en 2015, Lilium ha tenido un crecimiento notable. En diciembre de 2016 la empresa contaba con 35 especialistas y Atomico, una sociedad de capital riesgo con la sede en Londres, decidió invertir 10 millones de euros en el proyecto de Daniel Wiegand y sus socios. El 20 de abril de 2017, Lilium anunciaba que su prototipo de avión de despegue y aterrizaje vertical (VTOL), de dos asientos, eléctrico, había finalizado una serie de vuelos de prueba en Alemania. Durante los ensayos la aeronave realizó maniobras complejas y pasó del vuelo de despegue vertical al de crucero horizontal. A lo largo de 2017, Lilium incorporó a su plantilla a ejecutivos de Tesla, Airbus y Gett y en septiembre amplió sus fondos en 90 millones de dólares. El capital de la nueva ampliación fue suscrito por Tencent, LGT, Atomico, Obvious Ventures y Freigest.
En enero de 2018 Lilium ganó el premio 2018 Early Stage Company of the Year en el Global Cleantech 100 Awards, organizado por el grupo Cleantech. El 24 de abril del mismo año anunció la incorporación a la empresa de Frank Stephenson, famoso diseñador por su trabajo en BMW; MINI; Ferrari, Maserati, Fiat, Alfa Romeo y McLaren, para hacerse responsable de todos lo relacionado con los diseños de los servicios de Lilium.
En la actualidad Lilium trabaja en el desarrollo de un prototipo con capacidad para transportar 5 pasajeros a velocidades de hasta 300 km/h y distancias de 300 km. En 2019 tiene intención de efectuar el primer vuelo de pruebas pilotado con un prototipo y en 2025 pretende que sus aeronaves presten servicios de transporte aéreo como taxis en determinados núcleos urbanos.
Airbus no ha querido quedarse al margen y hace poco más de dos años inició el desarrollo de un avión VTOL, eléctrico, autónomo, para un pasajero: el Vahana. Con una rapidez extraordinaria la compañía aeronáutica logró efectuar las pruebas de un prototipo ya que en febrero de 2018, el Vahana realizó un despegue vertical que duró 53 segundos. El VTOL eléctrico de Airbus lleva ocho hélices montadas en dos alas en tándem, basculantes, cada una de ellas con cuatro propulsores. A diferencia del avión de Lilium en el que únicamente se mueven los propulsores, en el de Airbus basculan las alas en las que se han fijado las hélices para cambiarlas de orientación, dependiendo de la fase del vuelo.
La velocidad a la que ha reaccionado Airbus es un indicador de que el proyecto de aerotaxis eléctricos VTOL no es una quimera.
https://lilium.com/

de Francisco Escarti Publicado en Aviones

Roland Garros, el aviador que prestó su nombre al tenis.

2014-09-roland-garros

En realidad, Roland Garros apenas tuvo relación con el tenis, aunque la mayoría de la gente piensa que se hizo famoso en Francia gracias a la práctica de dicho deporte. Famoso si fue en vida, pero debido a sus actividades aeronáuticas, porque desempeñó un importante papel en la Aviación francesa de principios del siglo XX.

Eugène Roland Garros nació en Saint Denise, en la isla de la Reunión, Francia, el 6 de octubre de 1888. La familia se trasladó a Saigón, donde su padre montó un bufete de abogados. Sin embargo cuando el muchacho cumplió los 12 años sus progenitores se instalaron en París. El joven Roland Garros fue un magnífico deportista, hasta el punto de ganar el campeonato de ciclismo de Francia en 1906. Además del ciclismo también practicó el fútbol y el tenis. Sus excelentes cualidades deportivas no impidieron que superase las pruebas de acceso a la Escuela de Estudios Superiores de Comercio de París (HEC) y se diplomara en 1908.

Roland Garros comenzó a trabajar en una empresa que vendía automóviles en París. En 1909 descubrió la aviación y empezó a volar con un monoplano muy ligero que construía Alberto Santos Dumont: la Demoiselle. Al año siguiente obtuvo la licencia de piloto número 147 de la aviación francesa.

Entusiasmado con el vuelo, en 1912 logró batir el récord mundial de altura con un avión de Morane-Saulnier al ascender a 18 410 pies, pero lo que lo haría famoso fue el vuelo de Fréjus, una población situada en la Costa Azul, a Bizerta, Túnez, a través del Mediterráneo, sin hacer ninguna escala. Ocurrió el 13 de septiembre de 1913; fue la primera vez que un piloto cruzaba este mar y la hazaña tuvo una gran repercusión en todo el mundo.

En 1914 estalló la I Guerra Mundial y Roland Garros se alistó en la Aviación Militar de su país como piloto. El joven aeronauta era una persona inquieta, interesada por los avances tecnológicos. En diciembre de ese mismo año empezó a trabajar con el fabricante, Morane-Saulnier, en el desarrollo de un mecanismo para sincronizar el disparo de las ametralladoras con el paso de las hélices. Con este dispositivo se podría colocar una ametralladora fija, en el morro de los aviones con hélices tractoras. Un ingeniero suizo, Franz Schneider, de la empresa alemana LVG, había patentado un invento con el mismo fin, en 1912, aunque a los militares de aquella época no les interesó llevarlo a la práctica porque los aviones se concebían exclusivamente como plataformas de observación. En las primeras aeronaves militares volaban dos personas: el piloto y el observador, responsable de tomar fotografías, hacer dibujos, examinar el despliegue y movimientos del enemigo o dar información a los artilleros sobre la efectividad de sus disparos. Sin embargo, muy pronto los observadores también se emplearon en el lanzamiento de bombas y armados con fusiles o pistolas, disparaban contra los aviones enemigos cuando se cruzaban con ellos. Los combates entre aviones apenas tenían consecuencias porque, con el piloto a los mandos del avión y el observador haciendo fuego, la coordinación de sus actuaciones era muy complicada y el resultado de los disparos inocuo. A finales de 1914, el Ejército francés le había encargado a la fábrica Morane-Saulnier que desarrollara un sistema que permitiera disparar una ametralladora, fija al morro del avión, sin que las balas dañaran la hélice. Con este invento sería el piloto quien apuntaría dirigiendo el avión y haría también las veces de artillero.

Los técnicos no lograron conseguir que el mecanismo de sincronización funcionara correctamente por la irregularidad de disparo de las ametralladoras y el equipo en el que trabajaba Roland Garros decidió optar por una solución menos sofisticada: colocaron superficies metálicas deflectoras en las hélices con las que se trataba de evitar que las balas las dañaran. Los proyectiles, de plomo, si alcanzaban la hélice eran desviados por estas superficies.

El 15 de marzo de 1915, Garros volvió a incorporarse a su escuadrilla en el frente. Dos semanas más tarde, el 1 de abril, volaba sobre Flandes, en solitario, cuando se encontró con cuatro Albatros. Garros se fijó en uno de ellos, el piloto iba armado con una pistola y el observador llevaba un rifle. Se aproximó para hacer fuego con su ametralladora Hotchkiss que disparaba a través de la hélice. Hizo 72 disparos ante los ojos sorprendidos de los alemanes que se preguntaban qué hacía aquel loco detrás de ellos acercándose a toda velocidad. El Albatros se incendió y cayó en barrena a tierra. Los otros tres aviones alemanes se lanzaron en picado para llegar lo antes posible a su base e informar a sus jefes de lo que habían presenciado. El avión derribado de los alemanes cayó en una zona que controlaban los Aliados y, después de aterrizar, Roland Garros se acercó para observar en persona el efecto que había producido el ametrallamiento sobre el avión enemigo. La escena le horrorizó. Roland ayudó a sacar del montón de escombros dos cuerpos desnudos y sangrientos. El cuerpo del piloto estaba tan destrozado que era irreconocible.

Garros tardó dos semanas en derribar otro enemigo y su tercera victoria se produjo el 18 de abril. Los franceses celebraron los éxitos de Roland con entusiasmo. El piloto se convertiría en el primero de los ases que con tanta pasión vitorearía la gente en los dos bandos. Después del éxito del nuevo héroe, la Aviación Militar de Francia decidió montar este dispositivo en los aviones con hélices tractoras. Los británicos también lo harían, pero con mayor lentitud.

Sin embargo, el triunfo francés no fue más que el preludio de la terrible pesadilla, el Azote Fokker, que sumiría a las fuerzas aéreas aliadas en un auténtico caos.

El 19 de abril, por la tarde, Roland Garros fue derribado en una misión de bombardeo sobre la estación de ferrocarril de Courtrai. Un soldado alemán, Schlenstedt, le disparó con su rifle y la bala rompió el conducto de alimentación de combustible de su Morane. El motor se paró y tuvo que hacer un aterrizaje de emergencia en una zona controlada por el enemigo. Garros incendió su aparato, como mandaban las ordenanzas, pero los alemanes llegaron a tiempo de recuperar parte del avión y lo detuvieron.
En cuanto en Berlín se enteraron del derribo del avión de Roland Garros, los alemanes trasladaron los restos del aparato a la capital y llamaron urgentemente a Anthony Fokker —un joven fabricante que tenía fama de poseer un extraordinario ingenio— para que estudiara el mecanismo de disparo. Fokker, después de analizarlo con detalle, concibió un sistema mucho más efectivo en el que el movimiento del motor se encargaba de disparar la ametralladora en el momento adecuado. El dispositivo ideado por Fokker se montó en sus monoplanos, Eindecker I, y a partir del verano de 1915 los aviones alemanes, con su extraordinaria potencia de fuego y maniobrabilidad, se adueñaron del espacio aéreo hasta que los Aliados consiguieron introducir en el frente aviones capaces de evolucionar en el aire y disparar como los Fokker, lo que les llevaría cerca de un año.
Roland Garros, prisionero de los alemanes, trató de escapar en numerosas ocasiones. Tras un largo cautiverio, en febrero de 1918 consiguió fugarse vestido con un uniforme del enemigo que él mismo se confeccionó. Cruzó los Países Bajos y llegó hasta Inglaterra para después regresar a Francia en un viaje repleto de aventuras.

En París le ofrecieron puestos de dirección en la Aviación Militar francesa que Roland rehusó y optó por reincorporarse al frente lo antes posible. El 5 de octubre de 1918, un día antes de que cumpliera 30 años, Roland Garros murió al ser derribado su avión, un SPAD VII por un Fokker D VII, cerca de Vouziers, en las Ardenas.

Cuando los tenistas franceses, conocidos como los Cuatro Mosqueteros, ganaron la Copa Davis en Filadelfia, las autoridades galas decidieron construir a toda prisa un nuevo estadio para albergar la celebración del evento en 1927, en París. Emile Lesieur, compañero de estudios de Roland Garros en el HEC y presidente del nuevo estadio en la Porte d’Auteuil, impuso que el nombre del recinto fuera el de su antiguo camarada: Roland Garros. El nombre le acarrearía suerte al estadio ya que Francia ganó todas las competiciones de la famosa copa hasta el año 1932.

En 1928 al aviador recibió el distintivo de Mourt pour la France y fue designado oficial de la Legión de Honor.

Cien años después de su muerte, Francia lo honra como un gran héroe nacional, un aviador conocido en todo el mundo por prestarle al tenis su nombre.

de Francisco Escarti Publicado en Aviadores

La creación de AMADEUS (dedicada al señor Trump)

wolfgang-amadeus-mozart_0

El deseo de los europeos de mantener nuestra independencia tecnológica frente a Estados Unidos se ha concretado a lo largo de la historia reciente en colaboraciones como la construcción del avión supersónico Concorde, el desarrollo del consorcio aeronáutico Airbus, el despliegue del sistema de navegación por satélite Galileo y la creación del sistema de reservas Amadeus. Seguro que hay otros ejemplos, pero voy a referirme a este último, Amadeus, cuya gestación viví en primera persona.

En 1978, la liberalización del transporte aéreo en Estados Unidos marcó un hito histórico que cambiaría la aviación comercial para siempre. De un mercado constreñido por las regulaciones se pasó a un entorno normativo abierto que permitió la entrada de nuevos operadores, y desencadenó una carrera imparable entre las aerolíneas para reducir las tarifas y aumentar el volumen de tráfico y su cuota de participación en el reparto del mismo. Las aerolíneas norteamericanas se vieron obligadas a poner en práctica nuevos métodos para competir. Concentraron los tráficos en determinados aeropuertos, para desarrollar el concepto de hub, implantaron por primera vez programas de viajero frecuente, crearon un amplio abanico tarifario y se dotaron de sistemas automatizados para la gestión de las tarifas. La aerolínea American Airlines, bajo la presidencia de Robert Crandall, fue la primera en 1981, en introducir un programa de viajero frecuente con su tarjeta AAdvantage.

Las compañías de transporte aéreo descubrieron el inmenso poder comercial que les otorgaba su sistema de reservas por ordenador (CRS), conectado a la terminal con la que los agentes de viajes efectuaban las reservas en sus vuelos. En un principio las pocas agencias mecanizadas tenían que utilizar un terminal para cada aerolínea, pero muy pronto surgieron CRS en los que aparecían los vuelos de todas las compañías aéreas; si el propietario del CRS colocaba su oferta en las primeras páginas, los agentes reservaban sus vuelos con mayor asiduidad que los de la competencia. En 1983, el 43% de las agencias de viaje mecanizadas en Estados Unidos utilizaba el CRS SABRE, de American Airlines, mientras que la cuota de participación de los CRS de sus principales competidores era claramente inferior: APOLLO de United (28%) y PARS de TWA (10%). La situación de privilegio de SABRE obligó a que en 1984 el Gobierno de Estados Unidos tuviera que intervenir para establecer un orden de presentación de las distintas opciones de vuelo en los CRS, que considerase, de forma prioritaria, el interés del usuario. Con cinco años de retraso la Union Europea también se vería obligada a establecer un código de conducta para los CRS que protegiese a los pasajeros y evitara la competencia desleal.

La ola liberalizadora estadounidense llegó a Europa a principios de los años 1980, en plena crisis del sector de transporte aéreo. Las grandes compañías de bandera europeas no se mostraron proclives a favorecer la desregulación; sin embargo, la política liberal del Gobierno de Thatcher en el Reino Unido —que culminaría con la privatización de British Airways en 1987— la presión de los operadores chárter y de los grandes tour operadores, así como la necesidad de hacer efectivo el articulado legal de la propia Comunidad Económica Europea (CEE), sancionada por varias sentencias del tribunal de Luxemburgo, obligarían a los políticos de la CEE a implantar un proceso de desregulación que afectaría a todos sus Estados miembro. Este proceso fue muy lento y no estableció un entorno liberalizado para el transporte aéreo europeo hasta el año 1993.

Mientras Europa discutía sobre el ritmo de la desregulación y se gestaba el primer paquete de medidas, en 1985 se aprobó la entrada de España en la CEE, aunque hasta 1986 la decisión no se hizo efectiva. Por entonces, Iberia, al igual que el resto de aerolíneas europeas de bandera, tenía su propio CRS (Resiber) y terminales en las agencias de viaje del país, por los que obtenía considerables ingresos, que gestionaba una unidad de negocio de la aerolínea (SAVIA) en colaboración con RENFE.

El problema surgió en 1987, cuando American Airlines decidió invadir Europa con los terminales de SABRE que empezó a ofrecer a las agencias de viajes del Viejo Continente en condiciones muy favorables. Acostumbradas a pagar a sus compañías de bandera por estos servicios, SABRE ofrecía un mundo nuevo de oportunidades a las minoristas y a mejores precios. La alarma cundiría con mucha rapidez entre las principales aerolíneas europeas ya que ninguno de sus CRS estaba en condiciones de competir con SABRE y todas llegaron a la conclusión de que en cuestión de no demasiado tiempo el CRS americano podía adquirir una posición dominante en las agencias de viajes europeas. Hay que tener en cuenta que entonces los pasajeros no podían efectuar reservas directamente a través de internet, tal y como hacemos hoy, y que esa capacidad residía exclusivamente en las agencias de viajes a través de los CRS.

En Europa, las agencias de viajes tenían una gran dependencia de las principales aerolíneas, dada su posición dominante y de monopolio, por lo que estas últimas disponían de recursos para contener la invasión de SABRE, siempre con medidas de presión y de escasa efectividad a medio y largo plazo. En este sentido recuerdo haber dado instrucciones para cortar el suministro de algunos datos relacionados con el programa de vuelos de Iberia y sus filiales a SABRE, sin los cuales el CRS estadounidense no tenía apenas utilidad para las agencias de viajes españolas. La legalidad de la medida, en el marco de la libre competencia, era muy discutible y la reacción del CRS americano fue contundente, hasta el punto de involucrar a la diplomacia de su país en el asunto. Tuvimos que restaurar las conexiones en poco tiempo, aunque la medida causó el revuelo suficiente en el sector como para frenar la penetración del CRS norteamericano.

En realidad, el único modo de contener, lo que nos parecía una auténtica invasión, fue poner en práctica una vieja idea que algunos transportistas europeos habíamos discutido con anterioridad, y era la de construir un CRS con tamaño y volumen suficiente, que nos permitiera competir en condiciones de mercado con los americanos SABRE, APOLLO o PARS.
El 19 de junio de 1987 se celebró una reunión en París encabezada por los presidentes de Air France, Iberia, Lufthansa y un vicepresidente de SAS en la que se decidiría la creación de un gran CRS europeo. Jean Didier Blanchet, director general de Air France, Frank Beckman de Lufthansa, Helge Lindberg de SAS y yo, por parte de Iberia, asumimos la tarea de poner en marcha el proyecto y constituir la empresa, que se denominaría AMADEUS. En octubre de aquel año constituimos formalmente la sociedad y formamos el primer consejo de administración de la misma.

Los socios fundadores del nuevo CRS transportaban el 60% del tráfico regular europeo y aportarían a la nueva compañía unas 100 millones de reservas anuales, con lo que la viabilidad económica del proyecto estaba asegurada. En un principio el sistema se diseñaría para efectuar 150 millones de reservas anuales, con conexiones para 4500 agencias de viajes y capacidad para efectuar 1000 transacciones por segundo. El CRS empezaría a funcionar en 1989 y estaría a pleno rendimiento en 1991. La inversión durante los primeros tres años se estimó, inicialmente, que sería de unos 300 millones de dólares y muy pronto se decidió que el sistema se construiría con ordenadores de IBM.
La configuración organizativa del CRS tampoco llevó demasiado tiempo. Se llegó a una solución de consenso según la cual, la central se emplazaría en Madrid, junto con la empresa de marketing responsable de coordinar las actuaciones comerciales a nivel de cada país; en Niza se ubicaría la sociedad encargada del desarrollo de software del CRS, ya que la Costa Azul era un emplazamiento atractivo para muchos profesionales y facilitaría la contratación de expertos en desarrollos de software, y el centro de proceso, donde se montarían físicamente los ordenadores se instalaría en Alemania (Erding), SAS asumiría la presidencia del consejo de administración de la sociedad, al menos durante los primeros cuatro años.

Los socios fundadores de AMADEUS, tuvieron desde el principio un concepto de empresa global que reflejarían en el primer logo de la sociedad: una especie de bola del mundo, aunque su aspecto rugoso le daba cierto parecido al de una pelota de golf. La empresa no se anunció como un CRS sino como una Global Travel Distribution System (GDS), para poner mayor énfasis en su orientación al mercado turístico global. El modelo de negocio consistía en captar reservas para líneas aéreas, ferrocarriles, hoteles o cualquier otro proveedor de servicios, que los agentes de viajes incluían en sus paquetes turísticos, y cobrar a quienes prestaran dichos servicios una tasa por cada transacción.

AMADEUS trató de que se unieran a su proyecto otras aerolíneas regulares europeas, pero nueve de ellas, Alitalia, British Airways, KLM, Swissair, Austrian, Olympic, Sabena, Air Portugal y Air Lingus, crearon también en 1987, otro CRS, Galileo, con los mismos objetivos que AMADEUS.

La mayor parte del personal que inicialmente empezó a trabajar en AMADEUS procedía de las cuatro aerolíneas que lo fundaron. José Antonio Tazón, ingeniero de telecomunicaciones de Iberia, se hizo cargo de las actividades de proceso de datos de AMADEUS en Munich y tras un periodo de tiempo, en el que actuó como director general de la sociedad un ejecutivo sueco, Curt Ekstrom, Tazón asumió el liderazgo, en 1990. En 1992 el GDS hizo su primera reserva y en 1998 sus ordenadores procesaban un millón de transacciones cada día. José Antonio Tazón continuó como primer ejecutivo de AMADEUS hasta el año 2008.

Treinta años después de su concepción, AMADEUS se ha convertido en el primer GDS del mundo, con una cuota de participación en el mercado global del 42%, superior a la de su principal competidor, SABRE, con un 36%. Cuando Iberia vendió su último paquete de acciones en 2014 (7,49% del capital total), el valor de estos títulos en la bolsa era de 990 millones de euros. La inversión de Iberia en AMADEUS fue quizá la más rentable de toda su historia.

En momentos en los que la sociedad cuestiona casi todos sus valores, quizá convenga repasar las historias de éxito y sus fundamentos.

Los primeros cohetes militares

F1_large_

Cuando se enteró de los últimos avances tecnológicos de su país, Nelson solicitó cohetes para bombardear la ciudad de Cádiz, pero nunca se los llegaron a suministrar. El primer éxito militar de los británicos con esta arma se produjo en 1806, en plena guerra con Francia: lanzaron unos 200 cohetes sobre el puerto de Boulogne, donde se había concentrado la flota francesa. En pocos minutos la ciudad se incendió. Al año siguiente, durante el cerco a Copenhague, la Armada británica prendió fuego a gran parte de la capital danesa con los cohetes que se dispararon desde sus barcos. A pesar de que el duque de Wellington se expresó en contra del empleo de esta arma —«no quiero incendiar ninguna ciudad y no sé qué otro uso se les puede dar a los cohetes»— el príncipe de Gales y otros militares no compartían su opinión.

Los cohetes desempeñaron un papel importante en la guerra contra Napoleón, en las batallas de Leipzig y Dantzing, hasta el punto de que el Reino Unido formó un cuerpo de especialistas para manejarlos.

El desarrollo de este armamento en el Reino Unido se debió a la perseverancia de sir William Congreve quien, tras la lectura del libro de Innes Munroe sobre las guerras de Gran Bretaña en la India —publicado en Londres en 1789—, se puso a trabajar en el desarrollo de un cohete de uso militar.

En 1761, el autoproclamado gobernante del reino de Mysore en la India, Hyder Ali, venció a los británicos en la batalla de Panipat, con un ejército de 1200 soldados armados con cohetes de unas prestaciones, hasta entonces, desconocidas. El cuerpo de sus cohetes era cilíndrico, de hierro, con una longitud de unos 20 centímetros y un diámetro de 3,7 centímetros, terminado en un cono puntiagudo. Se estabilizaban en vuelo con una caña de bambú de dos metros y medio y tenían un alcance de unos 800 metros. Si se lanzaban en oleadas de mil o dos mil unidades, contra la caballería enemiga, podían causar efectos desastrosos en sus filas. Hyder Ali, falleció en 1782, después de librar dos sangrientas campañas contra los británicos en las que estuvo a punto de capturar la ciudad de Madras. Su hijo, Tipu Sultan, perfeccionó los cohetes de Hyder Ali y llegó a formar un ejército con 5000 soldados provistos de estas armas, antes de perecer en combate, a los 48, años en 1799. Los cohetes de Tipu Sultan se construían en centros creados por el gobernante, llamados Taramandalpeths, en los que los artesanos experimentaban con distintas pólvoras, ajustaban los pesos, dimensiones y materiales de los cohetes, y efectuaban pruebas de tiro.

Congreve era un joven que poseía una excelente educación: se había graduado en el Trinity College de la Universidad de Cambridge a los 21 años, en 1793, antes de estudiar leyes en Middle Temple. Fundó un periódico de carácter político pero su carrera como editor tuvo un final repentino, acusado de libelo y condenado a pagar una multa de mil libras, al perder un pleito contra Lord Berkley. El frustrado periodista pertenecía a una familia de raigambre militar y decidió comprar una pirotécnica en Londres para dedicarse al desarrollo de los cohetes cuando Gran Bretaña se hallaba inmersa en las guerras napoleónicas. No le fue difícil conseguir ayuda técnica y económica del Ejército para desarrollar un cohete que debía superar en alcance y poder destructivo a los de Hyder Ali.

Bajo la dirección del abogado, recién convertido en experto en cohetes, en el Arsenal de Woolwich se desarrollaron nuevas pólvoras, carcasas metálicas y explosivos incendiarios para las cabezas. También se perfeccionaron los métodos de fabricación: las carcasas se rellenaban con la pólvora húmeda y luego se dejaban secar durante meses. El material incendiario se formaba con nitrato de potasio, azufre, sulfuro de antimonio, sebo, colofonia y trementina. El lanzamiento se hacía con la ayuda de tubos que podía manejar con facilidad una persona.

En 1805, William Congreve consiguió que sus cohetes alcanzaran los 2000 metros, lo que superaba con amplitud a los del gobernante indio Hyder Ali. Congreve logró interesar al príncipe de Gales para que asistiera a una prueba que tuvo lugar en Brighton. Entusiasmado, el heredero de la corona lo puso en contacto con el primer ministro, Pitt, quien solicitó a lord Castlereagh y lord Mulgrave, que investigaran el asunto. Los emisarios del mandatario asistieron a una serie de pruebas en el Arsenal de Woolwich y quedaron gratamente sorprendidos por los resultados, hasta el punto de recomendar a Pitt que los cohetes de Congreve se fabricaran en el Arsenal Real para emplearlos en la guerra contra Francia.

La primera vez que se trataron de utilizar en el campo de batalla, los cohetes no tuvieron mucho éxito, pero en el segundo intento, en Boulogne, causaron estragos en las líneas enemigas.

Tras la guerra contra Napoleón, el Reino Unido se vio envuelto en otro conflicto bélico motivado por la independencia de Estados Unidos. Los cohetes de Congreve, perfeccionados, también se utilizarían en las campañas americanas. En una de aquellas batallas, los británicos bombardearon con fuego de artillería y cohetes Baltimore y trataron de conquistar la ciudad, pero se retiraron. Al amanecer del 14 de septiembre de 1814, un abogado estadounidense, Francis Scott Key, que había presenciado el asalto desde la cubierta de un barco, emocionado al contemplar la bandera de su país que ondeaba sobre el fuerte McHenry, escribió un poema, La bandera tachonada de estrellas, en el que se hacía mención al resplandor rojizo de los cohetes y el aire repleto de bombas: «…And the Rocket’s red glare, the Bombs bursting in air…». Los cohetes de Congreve llegarían a formar parte de la épica norteamericana ya que con el tiempo, el poema de Scott Key se convertiría en la letra del himno nacional de Estados Unidos.

Durante la primera mitad del siglo XIX, todos los países avanzados introdujeron la cohetería en sus Fuerzas Armadas. El problema de falta de control de los cohetes, lo trató de resolver otro británico, William Hale, mediante vanos metálicos situados en la salida de gases, pero a finales de siglo las nuevas piezas de artillería hicieron de los cohetes una reliquia militar de las guerras napoleónicas.

William Congreve, el introductor de los cohetes en los ejércitos de los países occidentales, falleció el 5 de mayo de 1828, poco después de cumplir 56 años. Sus años postreros fueron desafortunados al implicarse en negocios mineros ruinosos en América del Sur, y ser acusado de fraude. Con achaques de salud que le obligaron a utilizar una silla de ruedas, se retiró a vivir al sur de Francia. Sus maestros, los señores del reino Mysore, Hyder Ali y su hijo Tipu Sultan ya habían pasado a la historia para engrosar la lista de los peores enemigos a los que tuvo que enfrentarse Gran Bretaña en la India, gracias a sus temibles cohetes.

Hermann Oberth, un invitado de honor en Cabo Cañaveral (1969)

367208main_road2apollo-22b_full

Saturn V, viaje a la Luna (1969)

El 16 de julio de 1969, uno de los invitados de honor, en Cabo Cañaveral, para presenciar el lanzamiento del Apolo 11 se llamaba Hermann Oberth. Ese día el gigantesco cohete Saturno V despegó con los primeros astronautas que pusieron sus pies en la Luna, ante la incrédula y entusiasta mirada de uno de los científicos que más había contribuido al desarrollo de la aventura espacial. Oberth había nacido en la ciudad de Hermannstadt, Rumania, el 25 de junio de 1894. En junio de 1923, su libro, El cohete en el espacio interplanetario, causó un gran impacto en la comunidad científica y los medios; fue el detonante que impulsó la aparición de numerosas publicaciones técnicas y artículos periodísticos sobre los viajes espaciales durante el resto de la década de los años 1920. Para Hermann Oberth, contemplar a los 75 años cómo los sueños de su juventud se convertían en algo real fue una experiencia entrañable. Pero quizá lo más extraordinario de aquel acontecimiento sería que el Apolo 11 convirtió en realidad una profecía del abuelo materno del científico: Friedrich Krasser, doctor, social demócrata y escritor, que en 1869 anunció que el hombre tardaría cien años en pasearse por la Luna y que sus nietos lo verían. Las palabras del ancestro no las olvidó la familia y su frase la repetiría una y otra vez sin saber que Hermann Oberth había nacido para ser ese nieto destinado a que se cumpliera el auspicio del abuelo Friedrich.

Oberth recibió sus primeras enseñanzas en Schässburg, Rumanía, una ciudad adonde se trasladó la familia a vivir y en la que su padre, Julius Oberth, doctor en medicina, empezó a trabajar como cirujano. Hermann fue un discípulo aventajado que a partir de los diez años, cuando ingresó en las clases del bachillerato (Gymnasium), únicamente pensaba en los viajes espaciales.
El muchacho leyó la novela de Julio Verne, De la Tierra a la Luna, en la que su autor describió un viaje al satélite terrestre de tres personajes, en una cápsula de aluminio impulsada por un cañón cuya ánima, horadada bajo tierra, tenía una longitud de 274 metros. La velocidad de boca del proyectil o cápsula espacial, según el novelista, debía alcanzar unas 12000 yardas por segundo (11 Km/s) para llegar a la Luna. Oberth hizo un gran número de cálculos para determinar si con aquella velocidad la nave arribaría a su objetivo y llegó a la conclusión de que sí lo haría. Sin embargo, también dedujo que la aceleración en el alma del cañón resultaría insoportable para los astronautas, ya que alcanzaría decenas de miles de veces la de la gravedad. Para que la aceleración no superase dos o tres veces la gravedad —valores que Oberth estimó que podrían soportar los astronautas— el cañón debería tener una longitud de dos o tres mil kilómetros. Durante algunos años, Oberth seguiría obsesionado con el modo de impulsar una nave a las velocidades necesarias para escapar de la atracción terrestre y viajar al espacio exterior sin que la aceleración destruyera la cápsula y a sus ocupantes.

A los 15 años ya había llegado a la conclusión de que el único modo de hacerlo era mediante cohetes o sistemas de propulsión que liberasen parte de su masa. En un principio dudó de que el cohete funcionara en el vacío, al no poderse apoyar los gases de escape en el aire. Sin embargo observó que al saltar de una barca en un lago, antes de que él pusiera un pie en tierra, la barca ya había empezado a moverse. En realidad la cuestión la había resuelto Newton hacía muchos años, pero algunas personas dudaban de que los cohetes pudiesen funcionar sin apoyarse en el aire. De algún modo, Oberth dedujo que la velocidad de impulsión de un cohete era proporcional a la velocidad de escape de los gases y al logaritmo natural del cociente de las masas inicial y final del cohete. Esta fórmula, que publicitó el ruso Tsiolkovsky en 1903, se había planteado con anterioridad en otros ámbitos y resulta de la aplicación inmediata del principio newtoniano de conservación de la cantidad de movimiento a un elemento que se mueve gracias al impulso de un flujo de masa que lo abandona. Además del sistema de propulsión a Oberth le preocupaba la capacidad del cuerpo humano para soportar aceleraciones y su comportamiento en ausencia de gravedad. En relación con estas dos cuestiones hizo varios experimentos, lanzándose al agua desde varias alturas y dentro de una piscina; concluyó que el hombre podía soportar aceleraciones de dos o tres veces la gravedad durante algún tiempo y hasta siete u ocho veces, unos segundos, y que los humanos sobrellevaban razonablemente bien la ausencia de esta fuerza. En 1909, Oberth diseñó su primer cohete, propulsado con nitrocelulosa y con capacidad para transportar varios hombres al espacio. En este proyecto concibió la idea de etapas sucesivas ya que los depósitos de combustible se liberaban conforme se vaciaban.

A través del farmacéutico de Schässburg, aficionado a la caza, se enteró que los gases de escape en la boca de una escopeta alcanzaban una velocidad de unos 1000 metros por segundo. Este valor le pareció muy reducido por lo que llegó a la conclusión de que ni la nitrocelulosa ni la pólvora permitirían suministrar a un cohete la velocidad necesaria para escapar de la Tierra. En una novela de Hans Dominik, El viaje a Marte, el autor especuló con la idea de utilizar oxígeno e hidrógeno para impulsar la nave espacial. Oberth pensó que la reacción de ambos gases liberaba suficiente calor para que la velocidad de escape fuera muy elevada. Sin embargo, el problema es que el almacenamiento de estos elementos en botellas, a presión, exigiría llevar a bordo tanques excesivamente pesados. Se le ocurrió que la solución consistiría en transportarlos en estado líquido. Tres años después de su cohete propulsado con nitrocelulosa, Oberth diseñó, en 1912, otro cohete impulsado por gases que salían por una tobera después de que se produjera la combustión en una cámara que se alimentaba de hidrógeno y oxígeno, en estado líquido, almacenados en dos depósitos independientes.

A lo largo de sus años de bachillerato, Hermann se obsesionó con la idea de desarrollar un cohete capaz de transportar al hombre al espacio exterior, llegó a identificar los problemas principales a resolver para hacer posible el viaje y concibió un diseño de nave espacial muy avanzado. El joven Oberth estudiaba con verdadera pasión todas aquellas materias que servían como instrumento para resolver el único problema que realmente le interesaba.
Pasaba horas y horas sumido en sus pensamientos, hasta el punto de evitar la compañía de otros alumnos de su clase para que no lo distrajeran. Sus proyectos los mantuvo en secreto; tan solo los compartiría con un círculo muy estrecho de personas de confianza, por temor a que lo tratasen de enajenado.
Cuando finalizó el bachillerato (Gymnasium) y después de curarse de unas fiebres, en 1913, decidió estudiar medicina. A pesar de que su madre hubiese preferido que se dedicara a las matemáticas y la física, la influencia de un primo suyo, médico de la Marina, y de su padre, cirujano, prevaleció sobre lo que, en principio, parecía ser la vocación de Hermann. El joven pensó que los estudios de medicina le permitirían abordar parte de los problemas asociados a los viajes espaciales y que, en cualquier caso, él seguiría trabajando, por su cuenta, en el diseño de sus naves.

Oberth se trasladó a Munich, donde compaginó las clases de medicina con estudios de matemáticas y astronomía, pero su estancia en Alemania apenas duró un par de años. Al estallar la I Guerra Mundial, como era un ciudadano del imperio Austro-Húngaro, tuvo que regresar a su ciudad de residencia habitual en donde lo alistaron en el Ejército y lo enviaron al frente. En febrero de 1915 fue herido y devuelto al hospital de Schässburg. Allí se curó y en vez de regresar a las trincheras, dados sus conocimientos de medicina, se le asignó un puesto de asistente en el hospital.

Hermann hizo un magnífico trabajo como asistente de médico y, dadas las circunstancias, en una ocasión llegó a operar con éxito a un paciente que sufría un ataque de apendicitis. Sin embargo, Oberth no abandonó sus investigaciones aeroespaciales: realizó experimentos para tratar de dilucidar el comportamiento del ser humano en ausencia de gravedad y continuó trabajando en el diseño de un nuevo cohete. Él mismo se drogó con escopolamina con la intención de provocar una pérdida del sentido de la orientación en su organismo y constatar, en esas condiciones, hasta qué punto era capaz de realizar determinadas tareas. De aquellos experimentos dedujo que la ausencia de gravedad no impediría que los astronautas pudieran llevar a cabo los trabajos que se les exigiría a bordo en un viaje espacial. Y en relación a su nuevo cohete, en 1917 completó un diseño en el que abandonaría el hidrógeno y oxígeno líquidos; los sustituyó por una mezcla de alcohol y agua y aire líquido para evitar un calentamiento excesivo de la cámara de combustión que se refrigeraba con el combustible. Los comburentes se inyectaban en la cámara de combustión mediante bombas eléctricas alimentadas por un generador eléctrico que movía una pequeña turbina. Estaba dotado con un giróscopo para determinar el ángulo del eje longitudinal del cohete, que formaba parte del sistema de control que recibía información de la aceleración, velocidad y altitud de vuelo. El aparato medía 25 metros de altura y 5 de diámetro y disponía de una cabeza en la que se alojaba una carga explosiva de 10 toneladas. Hermann se presentó con la memoria y los planos del cohete en la oficina del director del hospital para informarle que deseaba hacerlos llegar al Ejército austríaco, aunque al final ambos decidieron remitirlo al Ejército alemán que les parecía más solvente. Oberth se entrevistó con el cónsul alemán que envió los documentos a su Gobierno.
Al cabo de algunos meses, Oberth recibió una contestación de Berlín, a través del cónsul, según la cual la experiencia del uso de cohetes en aplicaciones militares había demostrado que eran incapaces de alcanzar distancias superiores a los 7 kilómetros. Hermann no se sintió desanimado por la negativa alemana a llevar a la práctica su diseño.

En 1918 Hermann conoció a Mathilda Hummel con quién contrajo matrimonio en verano de aquel mismo año. Con el fin de la guerra y el desmembramiento del imperio de Austro-Hungría en ciernes, en otoño, Oberth fue trasladado a Budapest para recibir un curso acelerado que le otorgara la calificación de médico, aunque enfermó y tuvo que regresar a su casa. Cuando se curó, la guerra ya había terminado.

Al finalizar la contienda, Oberth hizo saber a sus familiares que su verdadera vocación no era la medicina y su padre aceptó sufragarle los estudios de matemáticas y física en la Universidad de Klausenburg que estaba cerca de Schässburg. Cuando Alemania abrió sus fronteras, Hermann decidió trasladarse para seguir su carrera en Munich. Allí la existencia para un extranjero como él era muy complicada y se volvió a mudar, esta vez a Göttingen que parecía ser un centro internacional y además disponía de un grupo de profesores de gran renombre como Ludwig Prandtl (Aerodinámica), Max Born (Física) o David Hilbert (Matemáticas).

El método de trabajo de Oberth resultó ser un tanto peculiar porque su interés principal era el desarrollo de un cohete y todos sus esfuerzos los orientó hacia el diseño de este artefacto. Para los profesores de aerodinámica, astronomía o física, el aparato de Hermann no formaba parte de sus disciplinas por lo que su diseño y los estudios asociados no podían servir como tesis académica. Sin embargo Ludwig Prandlt le hizo numerosas observaciones que Oberth tomaría en cuenta para introducir cambios en el proyecto.

En 1921 el inventor tuvo que abandonar Göttinberg porque su esposa Mathilda se fue a vivir con él y en aquella ciudad a un extranjero no se le permitía alquilar una vivienda. La pareja se trasladó a Heildeberg, con su hijo, pero las estrecheces de su economía les obligaron a separarse otra vez: el niño y la madre regresaron a Schässburg y Hermann se quedó en la Universidad. A finales de 1921, Oberth ya había compilado sus estudios en un tratado con el que pretendía graduarse, pero los profesores, que reconocían sus brillantes ideas, eran incapaces de catalogar su obra en ninguna de las disciplinas por las que la Universidad otorgaba credenciales. El profesor de Astronomía, Max Wolff, le recomendó que publicara el estudio a través de alguna editorial.
En verano de 1922, Hermann volvió a Schässburg sin haber logrado encontrar ningún editor para su obra. Por fin, en octubre de ese año, la casa Oldenbourg de Munich le comunicó que estaba en disposición de hacerlo siempre y cuando el autor corriera con los gastos. Su esposa, Mathilda, tenía unos ahorros y se los dio a su marido para que pudiera hacer frente a la edición del libro.

Con el título de El cohete en el espacio interplanetario, en junio de 1923, se publicó la primera obra de Hermann Oberth. Según el autor, en su libro se demostraba que el estado de la tecnología permitía construir máquinas capaces de volar más allá de la atmósfera terrestre, incluso, con mejoras, podrían escapar de la atracción terrestre con seres humanos a bordo y su coste de fabricación y operativo las haría rentables en las próximas décadas. La obra, de 92 páginas, estaba dividida en tres partes: en la primera trataba sobre la teoría general de los cohetes, en la segunda de su construcción y en la tercera sobre las cuestiones relativas a la seguridad, la vida a bordo y el uso que se le podría dar en el futuro a las naves espaciales y los cohetes.
En la primera parte de su libro, Oberth expuso cinco condiciones para garantizar el óptimo funcionamiento del cohete: 1) que la velocidad de salida de los gases se mantuviera constante, 2) que la velocidad de ascenso permitiese que en todo momento el peso del cohete y la fuerza de resistencia del aire fueran iguales, 3) que ascendiera según la vertical, 4) que emplease un combustible y un oxidante en estado líquido y 5) que la sobrepresión de los tanques sirviera para reforzar el cuerpo del cohete. En la segunda parte de la obra, el científico propuso un cohete con dos etapas. Para la primera etapa el combustible era alcohol mezclado con agua y el comburente oxígeno líquido, mientras que para la segunda se empleaba el hidrógeno y el oxígeno líquidos. En la tercera parte, Oberth trató con detalle el asunto de los efectos de la aceleración sobre el cuerpo humano y la ausencia de gravedad, también se refirió a cómo gestionar situaciones de emergencia y el coste del desarrollo de los cohetes; quizá, el aspecto más novedoso para el gran público de su obra se halla en esta tercera parte en la que mencionó también la posibilidad de viajar a la cara oculta de la Luna, a otros planetas, y de construir estaciones espaciales, satélites y otras plataformas interplanetarias de utilidad para los hombres.

El libro de Hermann Oberth tuvo una gran repercusión en los medios y los círculos científicos, sobre todo, alemanes, rusos, franceses y en menor medida estadounidenses. Mientras que el libro del norteamericano Goddard de 1920, Métodos para alcanzar altitudes extremas, en el que su autor formuló la teoría de los cohetes en términos muy similares, había pasado prácticamente desapercibido, y la publicación del ruso Tsiolkovsky de 1903, Investigando el espacio con cohetes, pionera en la materia, apenas fue divulgada, la obra de Oberth alcanzó una gran popularidad. La parte tercera del libro, en la que se refería a los aspectos más prácticos de la exploración espacial fue la que captó con mayor intensidad el interés de la gente. Una prueba de esta ola de curiosidad por los asuntos interplanetarios que suscitó la publicación de Oberth en la década de 1920, es que en los cinco años que siguieron a su impresión, en Alemania se editaron 80 libros sobre el mismo asunto. En la Unión Soviética el libro del científico rumano rescató, no sin cierta amargura, la memoria del olvidado Tsiolkovsky. El 2 de octubre de 1923 el periódico Izvestia publico una reseña del trabajo de Oberth sin hacer referencia al veterano científico ruso, lo que motivó que Tsiolkovsky editara un panfleto con sus trabajos de 1903 en cuyo encabezamiento figuraba una breve introducción, escrita en alemán por A.L. Tschischevsky, seguida de otro artículo del propio Tsiolkovsky titulado El destino de un pensador, o 20 años de oscuridad. Todos estos hechos, incluidos los debates suscitados por los detractores de las ideas de Oberth —la mayoría de ellos porque creían que en el vacío los cohetes no funcionarían al carecer de aire en el que apoyarse, o porque pensaban que en ausencia de atmósfera no se produciría la combustión— contribuyeron, también en la Unión Soviética, a incrementar la popularidad del trabajo de Hermann Oberth. En 1924 se publicó el primer trabajo de F.A. Zander y N.A. Ryin empezó a compilar todo el conocimiento sobre el vuelo espacial que se publicaría en varios volúmenes con el título de Comunicaciones Interplanetarias. Otro escritor ruso, J.I Perelman, inició la publicación de los volúmenes de Viajes Interplanetarios, que aparecerían casi todos los años. Moscú sería la sede, en 1927, de la Primera Exhibición Internacional de Modelos de Aparatos y Mecanismos Interplanetarios. En ella participaron los primeros estudiosos de la astronáutica, las personas que plantearon las bases de la nueva ciencia: Tsiolkovsky, Zander, Goddard, Esnault-Pelterie y Oberth.

En 1923, a los 29 años, Hermann Oberth, con su libro El cohete en el espacio interplanetario, logró despertar el interés de la comunidad internacional por los viajes espaciales que, por primera vez, se convencería de que estaban al alcance de la tecnología del siglo XX. Con él se abriría el proceso de construcción de cohetes que llevaría al hombre a la Luna para convertir en realidad la profecía de su abuelo materno. Hermann tuvo el honor de contribuir de forma significativa a que se cumpliese y fue el nieto afortunado que lo contempló con sus propios ojos.

El final del Azote Fokker

700x_nieuport11_03

LA VIDA DE ANTHONY FOKKER

Anthony Fokker, primeros años
El primer avión de Anthony Fokker
Anthony Fokker, Johannisthal y el amor de Ljuba
Fabricante de aviones en Alemania
El falso teniente que hizo que las hélices disparasen las ametralladoras
Los primeros ases de la aviación alemana
Manfred Richthofen y el final de Boelcke

El final del Azote Fokker

De la fábrica de Fokker salieron unos 415 Eindecker de cuatro modelos. Todos se equiparon con motores rotatorios Oberursel, refrigerados por aire, una copia de los franceses Gnôme. Eran motores bastante poco fiables que consumían mucho combustible y aceite. Si el encendido fallaba sin que el piloto cortara el suministro de combustible, se inundaba de queroseno y era muy fácil que se incendiase. Cada motor era distinto, de forma que los pilotos tenían que acostumbrarse a las peculiaridades de su aparato. Además, la debilidad estructural de los Eindecker, con sus alas de perfiles finos y gran envergadura, también sería la causa de muchos accidentes.

Desde el verano de 1915 hasta la primavera de 1916, los Eindecker protagonizaron el Azote Fokker adueñándose por completo del espacio aéreo de la guerra. Los aviones de observación, Farman franceses y británicos, eran más lentos que los Eindecker y estos los derribaban fácilmente atacándolos por la cola. Los Morane-Saulnier de observación franceses, llevaban una hélice tractora y la ametralladora atrás, eran algo más rápidos, pero los monoplanos Fokker también se deshacían de ellos sin demasiados problemas. Aunque los Eindecker no fueran excesivamente fiables, porque a veces su mecanismo de sincronización de disparo con la hélice fallaba y su motor Oberursel dejaba de funcionar o se incendiaba, su potencia de fuego se impuso en el frente.

Como respuesta a los Eindecker, los británicos desarrollaron el DH.2, fabricado por Airco, el F.E.2 y el DH.8 de la Real Fábrica de Aviones, mientras que los franceses pusieron en servicio el Nieuport 11.
El DH.2 era un avión monoplaza, diseñado por Geoffrey de Havilland, biplano, con una hélice de empuje atrás, un motor rotatorio Gnôme de 100 HP y una ametralladora en el morro. Al principio la ametralladora podía colocarse en distintas posiciones, pero en la práctica los pilotos se darían cuenta de que era mejor dejar su posición fija y que fuera el piloto quien maniobrara el avión para hacer puntería. Los ajustes llevaron tiempo y hasta principios de 1916, en el Somme, los británicos no pudieron constatar que el DH.2 tenía posibilidades de enfrentarse a los E.III con éxito.

El DH.8 fue un avión de la Real Fábrica de aviones, con unas características muy parecidas al DH.2 de Airco.

El F.E.2 era también un biplano, con dos tripulantes, una hélice de empuje y motores Beardmore de 160 HP. El observador, situado en el puesto de morro llevaba una ametralladora que podía colocar también en diferentes posiciones. Estos aviones empezaron a prestar sus servicios a principios de 1916.

Pero, el avión que realmente logró neutralizar a los E.III de Fokker fue el Nieuport 11. Era un biplano, monoplaza, con alerones, en vez de sistemas de torsión de las alas como los Eindecker. El ala inferior tenía menor envergadura que la superior (sesquiplano). Llevaba motores rotatorios Gnôme o Le Rhône de 80 HP y de 110 HP (en el Nieuport 16). La ametralladora se instaló sobre el ala superior, porque los franceses aún no habían desarrollado un sistema para sincronizar sus disparos con el movimiento de la hélice. Los Nieuport 11 llegaron al frente en enero 1916 y en un mes había unos 90 en servicio. Los pilotos franceses le pusieron el sobrenombre de Bébé. No era un avión fácil de volar, por lo que el aeroplano se asignaría, en un principio, a los pilotos más expertos. Otro de los problemas de este aeroplano fue que el ala inferior estaba sometida a cargas excesivas y su rotura provocó muchos accidentes. En manos de un piloto experto, el Bébé, era un avión muy rápido, ligero, maniobrable, capaz de superar las prestaciones de los Eindecker y derrotarlos en el aire. Fue el primer avión de caza, realmente eficaz, de la aviación aliada.

Conforme los Nieuport 11 se adueñaban de los cielos, los pilotos alemanes urgían a sus mandos que les proporcionaran un avión capaz de hacerles frente. Querían un biplano —quizá influenciados por la configuración del nuevo avión francés— y el Idflieg empezó a evaluar distintos prototipos, de la clase D (Doppledecker), de los principales fabricantes alemanes interesados en suministrar este tipo de aeroplano: Halberstadt, Fokker, LFG Roland y Albatros.

Anthony, para contrarrestar a los Nieuport 11 concibió los Fokker D.II y D.I, biplanos con un solo asiento, diseñados con la ayuda de Martin Kreutzer, con motores Oberursel de 100 HP rotatorios y Mercedes, refrigerados por agua, en línea, de 120 HP, respectivamente. A estos aviones le seguiría el D.III que llevaba el nuevo motor rotatorio Oberursel de 160 HP.

Oswald Boelcke voló con el Fokker D.III del 2 al 15 de septiembre de 1916 y aunque obtuvo 7 victorias lo encontró lento, poco maniobrable, y recomendó que no se enviara a los sectores más activos del frente. Los biplanos de Fokker seguían utilizando el sistema de torsión de las alas para efectuar las maniobras de alabeo, lo que afectaba negativamente sus prestaciones.

Fokker fue el primer fabricante alemán en equipar un caza con un motor Mercedes, refrigerado por agua: el D.II y el D.I; el D.I fue posterior al D.II. Sin embargo, el Albatros D.II, con un motor Mercedes en línea de 160 HP, se impuso al Fokker D.I.

A mediados de 1916, los fabricantes de aeroplanos alemanes esperaban con impaciencia que Mercedes sacara al mercado sus nuevos motores. Los motores limitaban la producción de aviones y el Idflieg se encargaba de distribuirlos. Fokker tenía la impresión de que los fabricantes alemanes se ponían de acuerdo en contra suya, para desacreditarlo en Berlín y repartirse los motores de aviación.

Los motores en línea tenían ventajas, debido a su fiabilidad, pero eran más pesados; también permitían diseñar aviones con una sección frontal más pequeña, con lo que disminuía la resistencia. Debido a su mayor peso, el Idflieg no autorizaba el uso de motores en línea en los aviones de caza. Eso fue así hasta que aparecieron los nuevos Mercedes de 160 HP y el organismo alemán cambió las normas. A partir de ese momento, en Berlín se desencadenó una sucia batalla entre los fabricantes alemanes para conseguir los motores Mercedes ya que se convirtieron en el cuello de botella de la industria aeronáutica. El enemigo común a vencer era Fokker, que dominaba el mercado de los aviones de caza con los Eindecker. Su condición de extranjero sería uno de los argumentos de la competencia para desacreditarlo. Murmuraban que invertía sus beneficios fuera de Alemania, lo que no era del todo cierto. Anthony siempre buscaría sus apoyos en la línea de combate y procuraba mantener excelentes relaciones con los ases de la aviación, para lo que, sus dotes como piloto, le ayudaron mucho, pero la batalla de la asignación de motores, por parte del Idflieg, la ganó Albatros que conseguiría la mayor parte de los motores Mercedes 160.

Si bien Fokker atribuyó el éxito de Albatros al favoritismo del Idflieg, también hubo otros motivos que contribuyeron al triunfo de este fabricante. Por ejemplo, el uso de alerones, en vez del mecanismo de torsión de las alas, haría que los biplanos de Albatros fueran más maniobrables que los de Fokker. El resultado fue que Albatros ganó la competición de los biplanos alemanes, clase D, para dar respuesta a los Nieuport 11 y 16 franceses. Si bien Fokker fue capaz de vender centenares de biplanos, al igual que Halberstadt y LFG Roland, Albatros se llevó la parte principal del negocio y llegó a fabricar 4 708 aeroplanos, de la clase D, la mayoría D.III y D.V.

El Albatros D.II fue el avión que permitió a los pilotos alemanes, a finales del verano y durante el otoño de 1916, enfrentarse por primera vez con plenas garantías de éxito a los Nieuport. Estaba equipado con un potente motor Mercedes en línea, refrigerado por agua, de 160 HP y dos ametralladoras sincronizadas con la hélice, en el morro. Su velocidad, capacidad de maniobra y potencia de fuego, lo convertirían en el avión de caza más potente de la guerra, a finales de 1916. La nueva versión del Albatros, el D.III, entró en servicio en diciembre de aquel año. Con un motor Mercedes de 170 HP y una envergadura ligeramente superior a la del D.II, podía operar a una altura de 5500 metros, alcanzaba 175 kilómetros por hora de velocidad punta, a nivel del mar, y disponía de una extraordinaria capacidad de fuego con sus dos ametralladoras de 7,92 milímetros en el morro, sincronizadas con la hélice.
Los Albatros D.III eran aviones fáciles de volar, aunque no estaban exentos de problemas. El 27 de enero el mando alemán ordenó a todas las Jasta que dejaran en tierra sus D.III. Cuatro días antes, un piloto de la Jasta 6 había tenido un accidente debido a la rotura del larguero del ala inferior derecha y, lo que aún resultó más alarmante, un día después de aquel episodio, en el avión de Manfred von Richthofen, un D.III nuevo, se descubrió durante una inspección una grieta, también en la misma zona. El avión volvió a entrar en servicio el 19 de febrero de 1917, después de que Albatros reforzase la estructura de todas las alas inferiores de los D.III. Las alas inferiores de los sesquiplanos estaban sometidas cargas importantes y los largueros de los D.III se hallaban un poco retrasados. Las alas soportaban bien las pruebas estáticas de carga, pero en vuelo, las fuerzas aerodinámicas las deformaban y retorcían, presentando unos diagramas de fuerzas que las pruebas estáticas no reproducían. Las causas por las que las alas inferiores se rompían con facilidad, tanto las de los Albatros D.III como las de los Nieuport Bébé, entonces no se llegaron a conocer con detalle.

Hay que tener en cuenta que durante la guerra los aviones se diseñaban utilizando métodos bastante rudimentarios. La forma del avión se dibujaba con tiza en el suelo y en un par de semanas se construía un prototipo. Los técnicos se dejaban llevar por su experiencia e intuición y no existía ninguna metodología de diseño.

Fokker en la sombra

Anthony Fokker, que se había convertido en el fabricante de aviones de referencia con el primer caza alemán, el Eindecker, y el mecanismo de sincronización de la ametralladora con la hélice, en 1915, al cabo de un año sería relegado a un lugar mediocre en el conjunto de fabricantes de aeroplanos alemanes que pugnaban por vender sus productos al Idflieg. Y, para empeorar las cosas, los funcionarios del Idflieg elaboraron un informe muy negativo del sistema de calidad de su fábrica, en Schwerin, después de la inspección que efectuaron durante el mes de octubre. Además, en noviembre de 1916, durante las pruebas hasta la destrucción, que hacía el Idflieg en Adlershof, los evaluadores descubrieron que un Fokker D.III no cumplía con las especificaciones que se exigían a los planos de cola y el fuselaje. Anthony recibió una seria reprimenda verbal y el uso de sus aviones se prohibiría, con carácter temporal, en el frente. Por si todo lo anterior fuera poco, a final de año, el Idflieg también dejó fuera de servicio a los Fokker D.I, por problemas estructurales.

La realidad era que Tony no cuidó sus instalaciones de Schwerin con excesivo celo. Para aumentar el tamaño de la fábrica utilizó unos barracones de madera, que se empleaban en las prisiones, de unos 90 x 10 metros, cuyo costo era de 18 000 marcos. Conforme los iba necesitando, añadiría más módulos y el complejo industrial de Fokker en Schwerin, en donde llegaría a producir más de 4300 aviones, se parecería más a un campo de concentración que a una fábrica de aeroplanos. El único edificio de ladrillos que incorporó a la planta fue una vieja fábrica de pianos, de cuatro pisos.

En la fábrica se producían las piezas de los aviones y luego se llevaban al campo de vuelo, que estaba a unas cuatro millas, y allí se montaban y se probaban para después enviarlos a otro departamento en el que se instalaban las armas. Las ametralladoras se ajustaban y se verificaba con tiro real si disparaban sin ningún problema a través de las hélices. Por último, los aeroplanos se volvían a desmontar para guardarlos en cajas que se mandaban al frente. Este procedimiento era distinto del que solían utilizar los Aliados que enviaban los aviones a los aeródromos de la línea de combate volando.
En contraste con aquella precariedad de medios, Tony se rodeó de un buen equipo de profesionales. Martin Kreutzer colaboraría muy estrechamente con él, en el diseño del Eindecker, pero desgraciadamente falleció cuando probaba el Fokker D.I, en verano de 1916. Lo sustituiría Reinhold Platz, a quien había contratado como experto en soldadura en Johannisthal. Bernard de Waal se encargaba de las pruebas de los aeroplanos y de supervisar la escuela de pilotos, Heinrich Luebbe dirigía la fábrica de armamento y Wilhelm Horter actuaba como director general de su organización.

Tony vivía para trabajar. Por las mañanas, acompañado de su perro “salchicha”, negro, de orejas largas, Zeiten, recorría los distintos departamentos de su fábrica. Su perro se acostumbró a la inspección diaria hasta el punto de hacerla incluso los días en que su dueño estaba fuera de Schwerin. Anthony vivía en una pensión junto con Bernard de Waal, que también poseía otra mascota, un mono: Cuckoo. La señora, Frieda Grabitz, cuidaba de los dos jóvenes y soportaba las mascotas. No era una vida lujosa para un empresario que ganaba millones de marcos.

Anthony repartía su tiempo entre el diseño y pruebas de los nuevos prototipos, la supervisión de la fábrica, las demostraciones de vuelo, la atención a los pilotos del frente —en las visitas que hacía a los aeródromos y durante sus estancias en Berlín— y en reuniones con los políticos, militares y otros fabricantes, en la capital. Después, conforme avanzó la guerra, el problema del abastecimiento de materiales se convertiría en otro asunto que consumiría gran parte de sus energías.

Sus aviones, sus fábricas y su organización siempre se verían acuciados por problemas relacionados con el control de calidad. La falta de inversión y un cierto desinterés, por su parte, hicieron de la calidad el talón de Aquiles de su empresa.

A pesar de que a mediados de 1916, Tony perdió el liderazgo tecnológico e industrial de la aeronáutica en Alemania y sus Eindecker fueron reemplazados por los Albatros, el Gobierno no quiso prescindir de su fábrica que conseguiría contratos del Ejército —a lo largo de 1916 y durante los primeros meses de 1917— para entregar 791 biplanos de la clase D. El D.III sería el que mayor éxito tuvo como avión de caza, a pesar de los fallos estructurales, y la última versión, el Fokker D.V, con un motor menos potente, Oberursel de 110 HP, no serviría para efectuar misiones de caza y se emplearía como avión de entrenamiento. El Fokker D.III dejó de fabricarse a partir de la primavera de 1917.

El Idflieg no tenía intención de prescindir de la fábrica de Fokker en Schwerin, porque necesitaba que se mantuvieran operativos todos los recursos del país. A fin de mantener ocupada la planta del holandés le dio un contrato para producir aviones de entrenamiento, bajo licencia de AEG. Fokker se sintió herido en su orgullo propio, al ver como en su empresa se producían aeronaves de otro fabricante, pero fue la orden de trabajo más grande que había recibido hasta entonces: 400 aparatos.

Konstantin Tsiolkovsky, el padre de la Astronáutica.

tsiolkovski

Izhevskoye es una pequeña población de Riazán, en el corazón de Rusia, donde en invierno la temperatura se mantiene por debajo de los cero grados centígrados, aunque en verano asciende hasta los veinticinco. Allí nació, el 17 de septiembre de 1857, Konstantin Eduardovich Tsiolkovsky, quien para muchos fue el padre de la Astronáutica. Hijo de un guarda forestal, voluntarioso y decidido, y de una mujer inteligente, con gran sentido del humor, Konstantin disfrutó de una niñez activa y feliz hasta los nueve años. Fue un chico despierto, que aprendía fácilmente las lecciones, sensible, activo y buen patinador sobre el hielo. Cuando el tiempo mejoraba se adentraba en los bosques con otros niños para trepar a los árboles, construir cabañas o recoger frutos.

Su infancia se truncó por culpa de unas fiebres que le produjeron la sordera con la que tuvo que convivir durante el resto de su existencia. A los nueve años se hizo un profundo silencio al su alrededor, lo que dificultaría sus relaciones con las personas. Para Tsiolkovsky los años que siguieron hasta que cumplió los catorce fueron los más tristes de su vida. Ya de adulto, era incapaz de recordar ningún episodio de su existencia perteneciente a aquella época.

Poco después de la temprana muerte de su madre, en la biblioteca familiar, a partir de los catorce años, Tsiolkovsky descubrió libros de historia natural y matemáticas que estimularon su inteligencia. Cuando comprobó que era capaz de entender los textos, sin ninguna dificultad, se animó a leer todos los que encontró. Al mismo tiempo que estudiaba trató de poner en práctica algunas de las teorías que se le ocurrieron mediante la construcción de modelos. Fabricó globos, un torno, un pequeño carro que se desplazaba con la ayuda de una vela, capaz de ganar barlovento, y otros artilugios que se le fascinaban, como los astrolabios. El joven Konstantin llegó a ser muy hábil en el manejo de las herramientas para construir sus inventos.

Al cumplir los 16 años su familia decidió enviarlo a Moscú para que tuviera acceso a una biblioteca y continuase con su formación autodidacta. Allí conoció a Nikolai Federov, pensador ruso que desarrolló el cosmismo, una teoría filosófica según la cual la humanidad alcanzaría la inmortalidad y se extendería por el universo. Quizá influido por Federov, el joven Konstantin empezó a concebir sus primeras ideas sobre los viajes espaciales. Una noche la pasó en vela tras la ocurrencia de fabricar un aparato con masas que en su movimiento circular aportaran mayor fuerza centrífuga en la posición elevada, lo que le suministraría un empuje ascendente con el que podría levantarse del suelo. Tras el insomnio de la noche sufrió una profunda decepción a la mañana siguiente, al descubrir la inviabilidad de su ocurrencia. Tsiolkovsky estudiaba para adquirir los conocimientos necesarios que le permitiesen desarrollar sus inventos de los que construía modelos o prototipos en su modesto laboratorio. La dificultad para relacionarse con otras personas le hacía llevar una vida muy solitaria. Se acostumbró a trabajar con el exclusivo apoyo de sus escasos medios. Uno de los ejercicios que solía efectuar, cuando estudiaba algún tema nuevo, consistía en familiarizarse con las conclusiones y tratar de demostrarlas él mismo. El método era laborioso pero cada vez que lograba aplicarlo con éxito sentía una gran satisfacción y reafirmaba su confianza en su propia persona.

El muchacho gastaba casi todo el dinero que le enviaban sus padres en comprar libros y material para realizar sus experimentos, con lo que su dieta alimenticia se limitaba a unas cuantas barras de pan integral. Su salud terminó resintiéndose, hasta el punto de que su padre, alarmado, le obligó a que regresara a casa.

Después de una estancia de tres años en Moscú, Tsiolkovsky empezó a dar clases de física y matemáticas y pronto se acreditó como un excelente profesor. En otoño de 1878 superó las pruebas para ejercer como docente y pocos meses después abandonó la casa familiar para dar lecciones de aritmética y geometría en una escuela de Borovsk, en la provincia de Kaluga, cerca de Moscú. Por aquellas fechas también conoció a Varvara Sokolovaya con quién contrajo matrimonio.

A los 24 años, Tsiolkovsky escribió su primera obra científica que trataba sobre la teoría cinética de los gases. El profesor de Borovsk la envió a la Sociedad de Física y Química de San Petersburgo, donde no pasó desapercibida, aunque sus hallazgos habían sido publicados por otros científicos con anterioridad. Uno de los miembros de la Sociedad era Dmitri Mendeléyev, autor de la tabla periódica de los elementos. El segundo trabajo de Tsiolkovsky —que también remitió al círculo de eminentes científicos de San Petersburgo— fue La mecánica de un organismo vivo, que tras lograr la aprobación del renombrado fisiólogo Sechenov sirvió para que se le admitiera como miembro de la Sociedad.

En 1883, en un escrito en forma de diario, Espacio libre, Tsiolkovksy desarrolló el problema del movimiento de los objetos en ausencia de gravedad y resistencia. En estas condiciones un sistema compuesto por varias masas conserva la cantidad de movimiento y la energía cinética. Para ganar velocidad en el espacio libre, un objeto tiene que ser capaz de desprenderse de masa. El incremento de velocidad del objeto multiplicado por su masa será igual a la velocidad con que abandone la masa que expulsa multiplicada por la cantidad de masa que libera el objeto. Todas estas consideraciones llevarían al profesor de Borovsk a plantear que el único modo de desplazarse por el espacio libre es mediante una nave dotada de un motor cohete.

A partir de 1885, el científico ruso se centró en el estudio de asuntos aeronáuticos. Concibió un dirigible de cuerpo rígido, metálico, pero con ondulaciones de forma que su envoltura delimitara un volumen variable. En octubre de 1891 la Sociedad Imperial Técnica de Rusia le negó una subvención para construir un modelo de su dirigible. Al año siguiente, Tsiolkovsky publicó los resultados de sus investigaciones sobre el dirigible de cuerpo rígido en un documento, El aerostato dirigible de metal, que no logró captar la atención de las autoridades de su país.

En 1893, el científico y su familia se trasladaron a vivir a la ciudad de Kaluga y poco después compraron una casa de madera, situada en las afueras. Allí instaló su laboratorio y su despacho y encerrado en aquella vivienda transcurriría la mayor parte del resto de su vida, siempre ocupado, en la lectura, escribiendo o trabajando en su laboratorio.

Sin embargo, Tsiolkovsky aún tardaría algunos años en formular matemáticamente el movimiento de un cohete. El profesor escribió la ecuación y dejó anotada una fecha: 10 de mayo de 1897. La relación entre el cambio de la velocidad del cohete (ΔV), la velocidad de escape de salida de los gases (Ve) y las masas inicial (Mo) y final del cohete (M1), podía expresarse de la siguiente forma:

ΔV = Ve ln(Mo/M1)

El incremento de velocidad de un cohete, durante un intervalo de tiempo, es proporcional a la velocidad de escape de los gases y al logaritmo natural del cociente entre la masa inicial y final.

De 1897 hasta los primeros años del siglo XX, Tsiolkovsky estuvo muy ocupado con asuntos aeronáuticos relacionados con su dirigible y un avión metálico, sin riostras, de ala gruesa, estilizado. Con un túnel de viento muy simple efectuó mediciones de la resistencia de sus modelos y en 1898 publicó El Correo de Física experimental y elementos matemáticos y al año siguiente solicitó una subvención a la Academia de Ciencias para realizar mediciones de la resistencia al avance de cuerpos con distintas formas en su túnel de viento. El académico que analizó su solicitud, M. Rykachov, se dio cuenta de que el científico, con sus escasos medios, había sido capaz de remarcar la importancia de la forma de la parte posterior de cualquier cuerpo a la hora de determinar su resistencia al avance en presencia de una corriente de aire. A Tsiolkovsky le otorgaron una ayuda de 470 rublos que empleó en llevar a cabo más experimentos, en su túnel de viento perfeccionado, cuyos resultados entregó a la Academia a finales de 1901.

Fue en 1903 cuando el profesor de Kaluga publicó su primer artículo sobre los cohetes que apareció en la revista Revisión Científica: Investigando el espacio con cohetes. Este primer escrito no tuvo una gran repercusión en los medios científicos, pero la segunda parte de la misma obra, que apareció en 1911, sí alcanzó un gran impacto. Desde esta fecha, hasta 1935, Tsiolkovsky escribió un conjunto de artículos con sus ideas sobre los cohetes y los viajes espaciales que, para la mayoría de los historiadores, le confieren el título de padre de la Astronáutica. El científico ruso formuló la dinámica de los cohetes como cuerpos de masa variable, el modo de calcular su alcance, la velocidad mínima para que un vehículo orbite alrededor de la Tierra (7,9 m/s) o se escape a su atracción y pueda viajar hasta otros planetas o la Luna (11,2 m/s); también llegó a la conclusión de la necesidad de utilizar cohetes con combustible líquido y varias etapas para alcanzar las velocidades y alturas que exigen los viajes espaciales. De la fórmula que determina la velocidad de un cohete puede deducirse que el método más efectivo para incrementarla es conseguir una elevada velocidad de los gases de escape. El otro factor es la relación entre las masas, inicial y final del cohete, lo que sugiere que para aumentar la velocidad final, en el momento del lanzamiento del cohete el porcentaje del peso del combustible sobre el peso total debe ser lo más elevado posible; sin embargo la velocidad del cohete depende del logaritmo natural de esta fracción lo que quiere decir que si la relación de masa inicial y final es 3, para conseguir doblar la velocidad del cohete habría que aumentarla al cuadrado de este valor: 9 (32). Para conseguir las elevadas velocidades de los gases de escape necesarias en los cohetes destinados a viajes espaciales, Tsiolkovsky propuso motores alimentados con combustibles líquidos (hidrógeno, queroseno, alcohol y metano) y oxidante o comburente, también en estado líquido: oxígeno.

A nivel personal los primeros años del siglo XX fueron difíciles para Tsiolkovsky. Su hijo Ignaty se suicidó en 1902, su hija Lyubov fue arrestada en 1911 con motivo de sus actividades revolucionarias y en 1908 una inundación del río Oka destruyó muchos de sus trabajos científicos. En 1914, durante el Congreso Aeronáutico de San Petersburgo sus estudios sobre el dirigible de cuerpo rígido pasaron completamente desapercibidos.

Con el advenimiento del régimen soviético, Tsiolkovsky fue elegido miembro de la Academia Socialista, en 1919 y en 1921, después de retirarse como profesor, el Gobierno le concedió una pensión vitalicia, en reconocimiento a su labor científica.

Tsiolkovsky jamás construyó un cohete, pero fue el líder espiritual del círculo de ingenieros rusos que dirigió el desarrollo de estos ingenios en la Unión Soviética, sobre todo a partir de los años 1930. El científico nunca consideró que los grandes cohetes tuvieran un fin distinto al de los viajes espaciales y no participó en iniciativas de carácter militar. Vivió aislado en su mundo de silencio y se comunicaba con el resto de las personas a través de una trompetilla de su invención que llevaba consigo para descifrar las palabras de sus contertulios. En 1926, el científico explicaba en su carta a un colega, el profesor R. Rynin, las circunstancias en las que había trabajado:

«Los libros escaseaban, en general, y en mi caso particularmente. Por lo tanto tenía que pensar independientemente y, tantas veces sí como no, seguía un camino equivocado. Descubría e inventaba cosas que se conocían desde hacía tiempo. Por ejemplo, en 1881 trabajé sobre la teoría de los gases sin saber que llevaba 24 años de retraso. La ventaja de este método es que aprendí a pensar independientemente y adquirí una aproximación crítica a todas las cosas. Pero creo que la independencia es en mí una cualidad con la que nací y que mi sordera y falta de compañía la han reforzado».

Tsiolkovsky falleció en Kaluga, a consecuencia de una operación quirúrgica para extirparle un cáncer de estómago, el 19 de septiembre de 1935, cuando acababa de cumplir 78 años.

El primer vuelo trasatlántico de Iberia

Vuelo_inaugural_Iberia_Madrid_-_Buenos_Aires_(1946)

El 22 de septiembre de 1946, Iberia inició sus vuelos regulares a Buenos Aires, desde Madrid. Habían transcurrido más de veinte años desde que el legendario piloto Ramón Franco volase a través del Atlántico, de Palos de Moguer a Buenos Aires con escalas en Las Palmas, Cabo Verde, la isla de Fernando de Noronha, Natal, Río y Montevideo, a bordo del Plus Ultra. Cuando empezaron a volar los DC-4 de Iberia, la aerolínea programó escalas en Villa Cisneros, Natal y Río de Janeiro, pero fue necesario añadir otra en Montevideo debido a que el Gobierno uruguayo la impuso para autorizar el vuelo a través del espacio aéreo de su país.

En el vuelo inaugural la tripulación estuvo dirigida por los comandantes Jose María Ansaldo, Teodosio Pombo y Fernando Martínez Paz. El presidente y el gerente de Iberia junto con el director general de aviación Civil, sus representantes en la compañía, personal administrativo de Iberia y una comisión del ministerio de Comercio, presidida por el subsecretario, formaron el pasaje.

Iberia fue la primera línea europea en establecer conexiones aéreas con Buenos Aires, poco después de que finalizara la II Guerra Mundial. Se adelantó a las compañías de bandera de Francia, Italia, Alemania y Holanda que también tenían proyectos para efectuar este enlace aéreo.

El trayecto hasta Buenos Aires el DC-4 lo cubría con unas 30 horas de vuelo, a lo que había que añadir los tiempos en las escalas. En el viaje hacia el oeste se pasaba una noche a bordo, pero en el de vuelta eran dos las noches por lo que Iberia construyó un lujoso establecimiento en Villa Cisneros donde pernoctarían los viajeros y las tripulaciones, después de la cena que también se servía en el hotel. Sin embargo, a los pasajeros no les resultó grata una estancia tan larga en el desierto, que se producía cuando ya faltaba muy poco para llegar a España y la compañía terminó cancelando la pernocta. Además, la escala en Villa Cisneros se sustituyó por otra en Cabo Verde, aeropuerto de la isla de La Sal, cuando Portugal abrió sus instalaciones al tráfico.

Los DC-4 tenían capacidad para llevar 44 asientos, pero en los primeros vuelos a Buenos Aires, con una frecuencia semanal, se configuraron con 24 pasajeros y el resto del espacio se empleó para transportar repuestos que se depositaban en las escalas, y literas para el descanso de tres tripulaciones completas. De este modo un mayor número de pilotos se pudo familiarizar con las características de la línea en poco tiempo.

La navegación a través del océano exigía llevar a bordo personal cualificado para tomar alturas astronómicas con un sextante, cada dos horas, a través de la cúpula de cristal de los DC-4 en la cabina de vuelo.

Los primeros vuelos trasatlánticos también plantearon a Iberia la necesidad de contratar y formar personal para que se ocupara de la seguridad y el confort de los pasajeros. A los directivos de la empresa Iberia no les gustaba el nombre de camareras o aeromozas y menos los extranjerismos como stewardess, por lo que hicieron una consulta a la Real Academia de la Lengua que sugirió la designación de ‘provisoras’, un nombre que tampoco fue del agrado de los gerentes de la compañía. Así es como surgió la palabra azafata, un vocablo en desuso que se refería al personal de servicio de la reina encargado de ayudarla a colocarse y quitarse vestidos y alhajas.

Otra cuestión que tuvo su importancia, en la España de los años 1940, era la misa dominical. El vuelo salía de Barajas los sábados por la mañana y no llegaba a Buenos Aires hasta el domingo por la tarde. Iberia realizó algunas consultas y constató que la celebración de la misa a bordo no estaba autorizada por la Iglesia. Los obispos de Madrid-Alcalá, y el de Natal se las ingeniaron para que pudieran celebrarse misas en un improvisado cobertizo en el aeropuerto de la ciudad brasileña, poco después de que aterrizara el avión de Iberia, al cabo de su travesía oceánica.

A pesar del elevado coste de los billetes (7250 pesetas), incluso cuando finalizaron los primeros vuelos de prueba y se ofertaron las 44 plazas, el coeficiente de ocupación de la línea fue del 80%.

El año 1946 Iberia inauguró sus vuelos trasatlánticos y consiguió equilibrar sus cuentas, con unos ingresos de 37,1 millones de pesetas; el Estado español no tuvo que desembolsar ninguna subvención. Después de pagar impuestos, la sociedad abonó un dividendo de 1 268 000 pesetas, además de repartir entre sus empleados gratificaciones extraordinarias de más de un millón de pesetas.