Breve historia de la aviación comercial (4)

Los accidentes aéreos que cambiaron la aviación comercial

El primer accidente de la historia de la aviación se produjo en Fort Myer, Washington, cuando uno de los inventores del aeroplano moderno, Orville Wright, efectuaba los primeros vuelos públicos en Estados Unidos para demostrar al Gobierno de su país que la aeronave que le acababan de vender cumplía con los requisitos estipulados. Orville debía probar que el aparato era capaz de transportar un pasajero para lo que tuvo que volar con otras personas. Una de ellas fue el teniente Tom Selfridge, con quién realizó un corto vuelo el 17 de septiembre de 1908. A Orville le costó despegar y cuando describía un círculo sobre el aeródromo, a una altura de unos 30 metros, escuchó algunos golpes secos y perdió el control del avión. Cayó en picado. Selfridge murió en el accidente y a Orville le quedaron secuelas durante el resto de su vida. Daba la casualidad que Selfridge había trabajado con Graham Bell en el desarrollo de un aeroplano y los Wright opinaban que les habían plagiado los sistemas de control. A Orville le desagradaba la idea de volar con Selfridge y su hermano Wilbur, que entonces se encontraba en Europa haciendo también vuelos de demostración, enseguida pensó que el accidente se debió a que Orville, en circunstancias de incomodidad personal, no habría sido capaz de mantener el nivel de concentración necesario para el vuelo. En realidad no fue así, sino que el problema lo originó, al romperse, una hélice defectuosa. Pero resulta muy ilustrativo que Wilbur enseguida relacionara el accidente con una causa que, muchos años más tarde, los expertos en seguridad aérea la catalogarían en el apartado de factores humanos, un capítulo que, con el tiempo, fue el que acumularía la mayor parte de accidentes aéreos.

Durante muchos años los aviones fueron medios de transporte poco seguros. Al principio eran pequeños y se construían de madera y tela. Cuando se estrellaban su estructura, flexible, se rompía en múltiples pedazos y era capaz de absorber gran cantidad de energía, lo que amortiguaba el golpe y aminoraba el daño que sufrían los pilotos. El francés Louis Blériot y muchos de sus colegas franceses se distinguieron por su habilidad para salir ilesos de múltiples accidentes. A pesar de todo, la lista de pilotos que perdieron la vida durante aquellos años es muy larga. Conforme los aviones de madera crecieron de tamaño y su velocidad se incrementó los accidentes aéreos pasaron a ocupar la primera página de los periódicos. Uno de los más famosos de los primeros años de la aviación comercial fue el que ocurrió con un avión de la TWA, el 31 de marzo de 1931, cerca de Bazaar, Kansas. Perecieron todos los ocupantes y la noticia se difundió con rapidez porque una de las víctimas fue el famoso entrenador del equipo de fútbol de la Universidad de Notre Dame: Knute Rockne. Hasta el mismo presidente de Estados Unidos, Herbert Hoover, declaró que la muerte del entrenador era una pérdida nacional. El avión era un Fokker F.10A, de madera laminada, un material susceptible de verse afectado por los efectos nocivos de la humedad. Aquel accidente aceleró la introducción de las aleaciones de aluminio con que ya empezaban a construirse las nuevas aeronaves y supuso el fin de los aviones vegetales. Donald Douglas demostró que los aviones con dos motores eran más seguros que los que llevaban tres. En la segunda mitad de la década de 1930 los grandes trimotores de Fokker, Ford y Junkers, dieron paso a aviones metálicos con dos motores como el Douglas DC-3.

Después de la II Guerra Mundial, el transporte aéreo comercial empezó a crecer con rapidez en todo el mundo y los aviones de hélice se sustituyeron por reactores. El primer vuelo de un reactor comercial lo hizo el 2 de mayo de 1952, un Comet bautizado con el nombre de Yoke Peter de la aerolínea británica BOAC, fabricado por De Havilland, que despegó en Londres y después de efectuar cinco escalas aterrizó en Johannesburgo. Aquel año, unas 30 000 personas volaron en reactores de la BOAC, entre ellas la reina Isabel y la princesa Margarita del Reino Unido. Una nueva época había nacido para la aviación comercial y el fabricante británico De Havilland asumió el liderazgo industrial. Sin embargo, dos años más tarde, el 8 de abril de 1954, el Yoke Peter se deshizo en miles de pedazos cuando sobrevolaba la isla de Elba, después de despegar de Roma. Los 21 ocupantes del avión murieron. De Havilland detuvo la fabricación del Comet y la BOAC los dejó en tierra. Los expertos centraron la investigación del accidente en los efectos que sobre la estructura del avión producen los ciclos de presurización y despresurización de la cabina. Cuando la cabina en la que se realizaban los ensayos alcanzó 3057 ciclos, el 24 de junio, se abrió una grieta en el fuselaje desde la esquina de una ventanilla. De Havilland tuvo que introducir modificaciones en la estructura del Comet, hacer las ventanillas redondas en vez de rectangulares y efectuar los correspondientes ensayos antes de que a estos aviones la autoridad aeronáutica les otorgara el correspondiente certificado. Boeing con el B 707 y Douglas con su DC-8 tomaron la delantera y De Havilland se limitó a pasar a la historia como el primer fabricante de aviones de pasaje a reacción y no tuvo ningún éxito comercial. La industria acumuló una gran cantidad de información acerca del efecto de los ciclos de presurización sobre la estructura de las aeronaves y las inspecciones y actuaciones necesarias para evitar el crecimiento de las grietas.

Los efectos de la compresión y descompresión de la cabina sobre la estructura de las aeronaves continuaron causando problemas a la aviación comercial durante bastantes años. Uno de los accidentes más insólitos que alguien pueda imaginar se produjo el 28 de abril de 1988 en un Boeing 737, de la compañía Aloha, que volaba de la isla de Ilo a Honolulú, en Hawái. El piloto acababa de estabilizar la aeronave a 21 000 pies cuando los pasajeros de las primeras filas contemplaron atónitos cómo un trozo del techo de la parte izquierda se desprendió. La descompresión succionó a una de las azafatas y desencadenó un torbellino de papeles y objetos revueltos al tiempo que saltaban las máscaras de oxígeno. El comandante se percató de que a sus espaldas había desaparecido la puerta de la cabina y arriba se divisaba un extraño cielo azul. Mientras la abertura continuaba succionando toda clase de enseres y más trozos del fuselaje a la vez que se agrandaba, el comandante realizó un fuerte picado para perder altura y efectuó un aterrizaje de emergencia en el aeropuerto de Maui donde fueron atendidos sesenta y cinco heridos. No hubo que lamentar más víctimas mortales que la de la azafata. La investigación del accidente determinó que la causa fue análoga a la que más de treinta años antes había afectado a los Comet: grietas producidas por lo que se conoce como “fatiga del metal”. El desgraciado final de este avión hizo que se mejorasen los procedimientos de mantenimiento para la detección temprana de este tipo de grietas.

Los accidentes de los Comet no ayudaron a evitar que la gente continuara con la idea de que volar era una actividad peligrosa, sobre todo en condiciones meteorológicas adversas y que los motores de las aeronaves se estropeaban con mucha frecuencia, pero que dos aviones podían colisionar en el aire no parecía preocuparle a nadie. El 30 de junio de 1956 ocurrió algo que haría cambiar de opinión a la mayoría de las personas. Ese día el Lockheed Super Constellation del vuelo TWA 2 despegó de Los Angeles con destino a Kansas City pocos minutos antes de que lo hiciera el Douglas DC-7 de United Airlines, del vuelo 718, que se dirigía a Chicago. Noventa minutos después los dos aviones sobrevolaban el Cañon del Colorado a 21 000 pies de altitud en el interior de una nube. El piloto de United vio al Super Constellation e intentó esquivarlo, pero su ala izquierda golpeó la cola del avión de TWA. Ambos perdieron el control y los 128 pasajeros y tripulantes que ocupaban las aeronaves murieron en el accidente. El desastre conmocionó a la opinión pública estadounidense porque se extendió la creencia de que se habría evitado con un sistema de control de tráfico aéreo en tierra más eficiente. El debate propició la creación de la Federal Aviation Agency en 1958 (FAA, más tarde reemplazada por la Federal Administration Agency), a la que el gobierno norteamericano confirió la autoridad necesaria para gestionar el espacio aéreo y recibió más de doscientos millones de dólares con el fin de que desplegara equipos de radar y comunicaciones en todo el país.

El accidente de junio de 1956 sobre el Cañón del Colorado, extendió a nivel global la convicción de que la seguridad de la navegación aérea exigía la creación de una autoridad aeronáutica civil, así como de organismos competentes y especializados en la gestión del tráfico aéreo y el establecimiento de normas y procedimientos operativos, junto con la instalación de equipos de ayuda al control del tráfico y la navegación aérea, a nivel nacional. Casi todos los países en los que la aviación comercial empezaba a tomar cierta importancia abordaron programas para gestionar sus espacios aéreos.

El 31 de agosto de 1986 un pequeño avión privado colisionó en el aire con un DC-9 de la aerolínea Aeroméxico en el área terminal de Los Angeles. El accidente causó la muerte de 82 personas. A partir de entonces, las autoridades aeronáuticas obligaron a que los aviones pequeños también estuvieran equipados con transpondedores que facilitasen su identificación a los controladores y se introdujo un sistema a bordo de las aeronaves comerciales, independiente del control de tierra, denominado Traffic Alert and Collision Avoidance Systema (TCAS), para evitar las colisiones entre aviones en el aire.  

Los sistemas de control de tráfico aéreo y el TCAS permitieron reducir drásticamente las colisiones de aeronaves en vuelo, aunque no desaparecieron por completo.  El accidente más trágico de la historia de la aviación motivado por un choque de aviones en el aire, en el que murieron 349 personas, lo protagonizaron, en 1996, un avión de Kazakhstan Airlines y otro de Saudi Arabian Airlines en Charkhi Dadri. En la tripulación del avión kazakhstaní únicamente el radio era capaz de comunicarse en inglés y ni siquiera disponía de un panel de instrumentos, sino que observaba los de los pilotos por encima de sus hombros. Con turbulencia y en un banco de nubes, el avión descendió mil pies por debajo de la altitud asignada por los controladores, de 15 000 pies. Los problemas de comunicación de la aeronave con el centro de control y entre sus tripulantes fueron las principales causas del accidente.

Muchos pilotos que se incorporaban a la aviación civil durante las décadas de 1960 y 1970, procedían de las Fuerzas Aéreas. La cultura y el estilo de trabajo en las cabinas de los aviones se inspiraba en principios de corte militar. En muchas ocasiones el capitán, o el comandante, actuaba con cierta prepotencia y el resto de la tripulación no se atrevía a contradecirle y si lo hacía procuraba no incomodarle. La forma de trabajo en la cabina de vuelo no facilitaba una comunicación fluida y útil entre sus miembros y del análisis de algunos accidentes, se llegó a la conclusión de que estas deficiencias habían contribuido a que se produjera la catástrofe. Quizá, la gota que colmó el vaso fue el accidente del 28 de diciembre de 1978 en Portland, Oregon, en el que la tripulación del Douglas DC-8 del vuelo de United 173, cuando se aproximaba al aeropuerto con 181 pasajeros a bordo, constató que el tren de aterrizaje no funcionaba correctamente. El avión se mantuvo en vuelo durante una hora, en un circuito de espera, para tratar de resolver el problema, pero todo ese tiempo únicamente sirvió para empeorar las cosas: la aeronave llegó a consumir el combustible de sus depósitos hasta el punto de verse obligada a iniciar un aterrizaje de emergencia y se estrelló poco antes de llegar a la cabecera de la pista, al agotarse el keroseno. Diez personas perdieron la vida. Los investigadores llegaron a la conclusión de que la principal causa del accidente fue la mala comunicación y la pésima coordinación entre los miembros de la tripulación. El mecánico de a bordo informó sobre la falta de combustible, pero ni el comandante se percató de las advertencias de su tripulante o no les otorgó la importancia que tenían, ni el mecánico supo hacerle ver a la tripulación la trascendencia de sus observaciones.  A partir de entonces, la NASA impulsó la introducción de otra forma de relacionarse la tripulación en la cabina basada en la gestión de los recursos disponibles (Cockpit Resource Management, CRM). La implantación de estos nuevos conceptos pretendía que el comandante actuara como un líder capaz de obtener lo mejor de cada uno de los miembros de su equipo y facilitase la comunicación entre todos ellos. En particular, el comandante debería responsabilizarse de repartir, entre su tripulación, el trabajo de comprobar el buen funcionamiento de todos los sistemas y equipos del avión durante el vuelo.

Los esfuerzos de la aviación comercial para mejorar los aspectos que afectan a la seguridad del vuelo y están relacionados con factores humanos, han conseguido que los accidentes de este tipo se reduzcan de forma progresiva. Fallos en la comunicación entre los tripulantes de cabina o entre las aeronaves y los centros de control de tráfico aéreo, han sido la causa de los accidentes más graves de la historia de la aviación. Uno de los peores accidentes de la historia de la aviación comercial, en el que perdieron la vida 583 personas, se produjo en el aeropuerto de Los Rodeos (Tenerife Norte) el 27 de marzo de 1977, al colisionar dos Boeing 747 en la pista de despegue. El siniestro se produjo porque el comandante del vuelo de KLM intentó despegar sin haber recibido la pertinente autorización.

El combustible que lleva un avión de transporte comercial en el momento del despegue puede suponer un veinticinco por ciento de su peso total. Una carga altamente inflamable capaz de provocar incendios destructivos. Cualquier fuego a bordo es muy peligroso. El 2 de junio de 1983, a 33 000 pies de altura, del lavabo del DC-9 de Air Canada, que volaba de Dallas a Toronto, empezó a salir humo negro que en poco tiempo invadió toda la cabina de pasajeros. El piloto efectuó un aterrizaje de emergencia en Cincinnati, con humo que apenas le permitía ver el tablero de instrumentos. Un minuto después de abrir las puertas, una llamarada envolvió la cabina: 23 pasajeros murieron y 18 pudieron escapar junto con la tripulación. No se llegó a saber nunca la razón por la que se produjo el incendio. Aquel accidente hizo que los aviones se equiparan, en lo sucesivo, con detectores de fuego en los lavabos y extintores automáticos. A partir de 1988, todos los aviones comerciales se fabricaron con materiales en sus interiores más resistentes al fuego. Algunos años más tarde, en 1996, otro accidente, en este caso de un DC-9 de ValueJet, cerca de Miami, fue el detonante para que las medidas de prevención de incendios adoptadas en la cabina se extendieran a las bodegas de carga y se establecieran procedimientos para el transporte de mercancías peligrosas a bordo de las aeronaves. El avión transportaba generadores químicos de oxígeno y 110 personas murieron cuando uno de ellos se activó accidentalmente y desencadenó un incendio en la aeronave. Ese mismo año de 1996, el 17 de julio, un Boeing 747 de TWA que acababa de despegar de Nueva York, con 230 personas a bordo, explotó en el aire. No hubo supervivientes. Una chispa originada por un corto circuito incendió uno de los tanques de combustible. Este accidente motivó algunos cambios de diseño para evitar descargas eléctricas cerca de los depósitos y Boeing desarrolló un sistema para inyectar nitrógeno, un gas inerte, en los tanques de combustible.

A mediados de la década de 1990 los aviones comerciales empezaron a llevar un radar en el morro diseñado para detectar turbulencias y cizalladuras atmosféricas, es decir, abruptas ráfagas descendentes o microrráfagas. El fenómeno se conocía desde el año 1966, cuando un Boeing 707 de BOAC fue literalmente destruido en pleno vuelo por una fuerte turbulencia en Gotemba, una ciudad japonesa ubicada a unos cincuenta kilómetros al norte de Tokío. Entonces, los expertos no sabían explicarlo y empezaron a considerar muy seriamente los efectos de las corrientes de montaña y las cizalladuras. En 1975 el profesor Tatsuya Fugita, de la universidad de Chicago, dio un paso de gigante en el esclarecimiento de estos fenómenos al reconstruir, con imágenes de satélite, la estructura de la nube que derribó al Boeing 727 de la compañía Eastern, cuando se encontraba a media milla de la cabecera de pista, en Nueva York. Fugita caracterizó las microrráfagas: corrientes de aire descendentes muy violentas que alcanzan velocidades de 145 millas por hora y no se ven, duran entre dos y tres minutos y chocan contra el suelo en un punto desde donde se reparte el aire en todas las direcciones. Sin embargo, la decisión de dotar a las aeronaves con equipos para detectar estas turbulencias la aceleró el accidente que sufrió un Lockheed L-1011 de la aerolínea Delta que se dirigía al aeropuerto de Dallas, el 2 de agosto de 1985. El avión se desplomó sobre el terreno una milla antes de alcanzar la cabecera de pista. Una fuerte ráfaga descendente hizo que perdiera velocidad de manera repentina. De las 163 personas que iban a bordo, 134 perdieron la vida. Durante siete años la NASA y la FAA realizaron investigaciones para diseñar equipos de tierra y a bordo que permitieran detectar las microrráfagas y evitar, en lo sucesivo, la ocurrencia de accidentes motivados por estos fenómenos atmosféricos.

En la década de 1980 Airbus revolucionó el transporte aéreo comercial con su nuevo avión Airbus A320 que, entre otras muchas innovaciones, incorporaba el sistema de control que se conoce como fly-by-wire. La verdadera innovación no consistía tanto en que los movimientos de control del piloto sobre los mandos se transmitieran a los planos aerodinámicos a través de señales eléctricas, sino que el ordenador de a bordo las interpretara y no permitiese que el piloto efectuase maniobras que, según el fabricante, situaban a la aeronave en unas condiciones de vuelo que no garantizaban su integridad. La frontera entre lo que puede y no puede soportar un avión no tiene unos límites tan precisos y en circunstancias críticas, quizá el juicio del piloto resulte más oportuno que el del ordenador, un razonamiento que ha dado pie a muchos debates públicos. El inicio de estas discusiones quizá se produjo cuando el 26 de junio de 1988, uno de los primeros aviones A320 de Airbus se desplomó cerca del aeropuerto de Habsheim en Mulhouse, mientras realizaba un vuelo de demostración a baja altura, con 136 personas a bordo. Afortunadamente, tan solo tres personas fallecieron en aquel accidente. El debate de si el accidente se podía haber evitado con un avión en el que el piloto hubiese tenido la posibilidad de incrementar un poco más el ángulo de ataque, o si, en ese hipotético avión, las consecuencias hubieran sido mucho peores porque el aparato en vez de arrastrarse sobre las copas de los árboles se habría desplomado al entrar en pérdida, estuvo en boca de muchos expertos. Sin embargo, los investigadores del accidente obviaron este debate y la mayoría de las recomendaciones que hicieron poco tuvo que ver con el avión y mucho con la conveniencia de preparar con mayor rigor los vuelos de demostración.

Uno de los accidentes aéreos que ha causado mayor estupor en la opinión pública fue el del Boeing 777 del vuelo MH370 de Malasya Airlines del 8 de marzo de 2014. La aeronave, que volaba de Kuala Lumpur a Beijing, desapareció de los radares y presumiblemente se dirigió hacia el sur con 239 personas a bordo, hasta que agotó el combustible y cayó al mar. Todo son especulaciones ya que el avión no se ha podido encontrar. Este accidente hizo que la Organización de Aviación Civil Internacional (OACI) diese el mandato a las aerolíneas de que las aeronaves se equipasen con medios para notificar, de forma automática, su posición a los sistemas de control de tierra en todos los tramos del vuelo. De otra parte, los fabricantes de aeronaves empezaron a desarrollar cajas negras que se eyectan si el aparato se sumerge en el agua.

La cuestión de la gestión automatizada del vuelo resucitaría con fuerza años más tarde a raíz de otro accidente. El 1 de junio de 2009, el Airbus A330-300 de Air France que volaba de Río de Janeiro a París penetró un área tormentosa. A 38 000 pies de altitud el avión entró en pérdida y cayó al océano. De la aeronave aparecieron algunos restos, pero las 228 personas que iban a bordo desaparecieron. Tuvieron que transcurrir dos años antes de que se rescataran los restos de las víctimas, parte del avión y las cajas negras. Los investigadores concluyeron que el hielo que se formó en los tubos de Pitot averió los instrumentos, lo que a su vez desencadenó una serie de fallos en el sistema de navegación, también que los pilotos no fueron capaces de recuperar el control de la aeronave debido a su excesiva confianza en los sistemas de navegación automática y que su falta de práctica en el vuelo manual les impidió resolver la situación. En los aviones comerciales modernos las tripulaciones están habituadas a navegar con pilotos automáticos y para que la aeronave cambie de nivel de vuelo o el rumbo, les basta con girar unos botones. Este accidente puso de manifiesto la necesidad de que los programas de entrenamiento de las tripulaciones otorgaran mayor importancia al vuelo manual.

Cada vez más, los ordenadores de a bordo o sistemas automáticos actúan también sobre los planos aerodinámicos de control del avión sin que el piloto lo advierta, a veces para mejorar el confort de los pasajeros, pero también por otras razones que luego explicaré.  Los accidentes de los vuelos de United 585 y USAir 427, en 1991 y 1994 respectivamente, abrieron una larga investigación que enfrentaría a los principales protagonistas del sistema de transporte aéreo en Estados Unidos. En ambos casos la aeronave era un Boeing 737 que perdió el control cayendo a tierra cuando se aproximaba al aeropuerto causando la muerte de todos sus ocupantes: 25 en el avión de United y 132 en el de USAir. Tras una polémica, ardua y costosa investigación, la FAA estableció una conexión entre los dos accidentes y el 13 de septiembre de 2000 hizo público que Boeing debería rediseñar el sistema de control del timón de dirección del B-737 e incorporar los cambios en los 3400 aparatos de este modelo que operaban en las líneas aéreas de todo el mundo. El coste de la operación se estimó en unos 200 millones de dólares. Boeing negó que el programa pretendiese remediar un problema que afectaba a la seguridad; aquellas actuaciones las consideró como mejoras. Sin embargo, muchos expertos opinan que el fallo del amortiguador de guiñada —un sistema que actúa sobre el timón de dirección para corregir, sin que el piloto intervenga, un molesto balanceo (balanceo del holandés) que se induce cuando el avión gira ligeramente sobre su eje vertical— fue el principal causante del accidente.

Si los supuestos fallos de los mecanismos automáticos de corrección del llamado balanceo del holandés originaron los accidentes de los vuelos de United 585 y USAir 427, la intervención de otro sistema automático de control en el Boeing 737 MAX, denominado MACS (Maneuvering Characteristics Augmentation System) para ajustar el ángulo de ataque en determinadas situaciones, dio pie a que se produjeran dos trágicos accidentes en 2018 y 2019, cuyas consecuencias no se han limitado a introducir modificaciones en los equipos, sino también en el modo de certificarlos y el estilo de dirección del fabricante Boeing. Todo empezó el 29 de octubre de 2018 cuando un Boeing 737 MAX de Lion Air, en Yakarta, se precipitó al mar y sus 189 ocupantes perdieron la vida. Pocos meses después, el 10 de marzo de 2019, otro Boeing 737 MAX de Ethiopian cayó a tierra nada más despegar de Adís Abeba causando la muerte de las 157 personas que iban a bordo. Todo apuntaba a que los pilotos no pudieron impedir que el avión saliera de un indeseable picado, a pesar de los esfuerzos que hicieron para conseguirlo. Pronto se llegó a la conclusión de que la avería del sensor del ángulo de ataque del avión que lee el MACS tenía mucho que ver con el accidente. El MACS solamente actúa en vuelo manual y con los flaps fuera, por lo que la pregunta que cualquiera puede hacerse es ¿por qué es necesario el MACS? Resulta que, en esas condiciones de vuelo, con elevados ángulos de ataque, debido al tamaño y posición del motor, el MAX se comportaría de forma distinta a sus parientes de la familia de aviones 737 de Boeing. Con el MACS pasa a ser uno más de ellos, porque este sistema, de forma automática, reajusta la fuerza en los mandos para que así sea y nivela los planos de control para corregir el ángulo de ataque.

La intervención de sistemas automáticos en el control del avión, superponiendo sus actuaciones sobre las del piloto, por supuestos motivos de seguridad, confort e incluso comerciales, ha complicado la determinación de las causas de algunos accidentes. La complejidad de estos análisis hace que de ellos se deriven conclusiones que van más allá de la necesidad de mejorar o cambiar el diseño de algunos equipos o la comunicación y el entrenamiento de las tripulaciones, sino que afectan a los procesos que sigue la autoridad aeronáutica para la certificación y hasta la cultura empresarial de los fabricantes. En el caso del MCAS, tanto la FAA como Boeing han sido objeto de críticas por la opinión pública. La primera por excesiva complacencia a la hora de certificar el sistema y la segunda por anteponer sus intereses comerciales a la seguridad del vuelo. Lo que parece poco discutible es que ya se han emprendido iniciativas para subsanar todas estas cuestiones.

Desde el principio, la aviación comercial ha hecho un uso muy constructivo de los accidentes, analizando sus causas e introduciendo cambios en el sistema para que no se repitieran. Las medidas correctivas, con la ayuda de la tecnología, han permitido que los accidentes aéreos sigan disminuyendo, año tras año, en términos absolutos y relativos. En poco más de cien años de existencia el modo de transporte aéreo ha pasado de ser el más inseguro, al más seguro de todos ellos. Según la National Transportation Safety Board (NTSB) de Estados Unidos, la tasa de muertes por cada 100 millones de millas viajadas es de 0,01 para la aviación, muy inferior a la del ferrocarril: 0,04.

¿Volverán los zepelines?

La catástrofe del Hindenburg del año 1939 frustró las expectativas de quienes soñaban con viajar en las lujosas estancias de aquellos gigantescos aparatos. Los dirigibles de cuerpo rígido inflados con hidrógeno eran demasiado peligrosos y los grandes zepelines que se fabricaron y sustituyeron este gas por helio, que no es inflamable, tampoco tuvieron ningún éxito como aeronaves de transporte aéreo regular por su elevado coste, difícil maniobrabilidad y limitaciones de velocidad.

Desde 1925 y hasta 2014, la empresa Goodyear ha fabricado un número pequeño de dirigibles de cuerpo elástico para publicitar sus productos en grandes eventos y realizar cortos vuelos turísticos. En 2014 Goodyear sustituyó sus dirigibles por los Zeppelin-NT, dirigibles fabricados en Friedrichshafen junto al lago Constanza por la empresa continuadora del proyecto que inició el conde Zeppelin hace ya más de cien años.

Zeppelin-NT resurgió con los fondos que la antigua empresa Zeppelin entregó al alcalde de Friedrischshafen para que se retomara la actividad de construcción de zepelines cuando las condiciones tecnológicas y económicas lo hicieran posible. La compañía se refundó en 1990 y su primer zepelín lo bautizó la nieta del fundador, en el lago Constanza, en 2000, cuando se cumplía un siglo del vuelo del primer dirigible de cuerpo rígido del conde von Zeppelin. El nuevo dirigible es híbrido, en parte elástico y en parte rígido, con una estructura triangular de fibra de carbono, relativamente pequeño (75 metros de longitud) si se compara con sus ancestros (el Hindenburg medía 245 metros), se rellena con helio y tiene capacidad para transportar 12 pasajeros y dos tripulantes en su cabina. Zeppelin-NT utiliza sus dirigibles sobre todo para efectuar vuelos cortos de demostración y turísticos en Alemania.

Hasta hoy podemos decir que, desde el desastre del Hindenburg en 1939, el rol de los dirigibles se ha limitado a satisfacer la curiosidad de unos pocos turistas, mostrar anuncios y en algunas ocasiones como plataforma de observación o para llevar a cabo experimentos científicos.

El futuro parece querer depararnos algunas sorpresas con respecto a los zepelines como aeronaves de transporte regular de carga y pasaje.

Desde 2008, el emprendedor californiano Rinaldo Brutoco, trabaja con su compañía H2 Clipper Inc. en el desarrollo de un gran dirigible de cuerpo rígido. En primer lugar, hay que señalar que este zepelín se rellenará de hidrógeno, algo que en la actualidad está prohibido en Estados Unidos y Europa. El hidrógeno es más ligero que el helio, con lo que el dirigible mejorará así sus prestaciones, pero H2 Clipper tendrá que convencer a las autoridades aeronáuticas de que la tecnología actual permite manejar un aparato de esas características con absoluta seguridad. Quizá no sea tan difícil como parece, porque Brutoco plantea al H2 Clipper como la solución ideal para transportar hidrógeno en la sociedad del futuro a los lugares que lo necesiten y no cuenten con un gaseoducto que los abastezca debido a que el consumo aún no lo justifique. Hay que tener en cuenta que el hidrógeno, al ser muy poco denso, para transportarlo, aún en estado líquido, requiere el uso de tanques de gran volumen. Este es uno de los problemas que plantea el empleo de hidrógeno como combustible a bordo de los aviones ya que para almacenar la misma energía que contiene el keroseno que cabe en los depósitos, si se llenan de hidrógeno líquido, sería necesario multiplicar por cuatro el volumen de los mismos. El zepelín de H2 Clipper parece el aparato ideal para transportar hidrógeno en grandes cantidades, desde el lugar donde se produzca hasta el punto de distribución. Con capacidad para cargar 150 toneladas, en bodegas de 7530 metros cúbicos, propulsado por motores eléctricos que emplean la electricidad generada a bordo en pilas de combustible que consumen hidrógeno, este zepelín está diseñado para mover cargas voluminosas en recorridos de 500 a 6000 millas.

Otro proyecto actual de dirigible híbrido, en este caso para prestar servicios de transporte aéreo, es el Airlander 10 de la empresa Hybrid Air Vehicles. Es un zepelín que se llena con helio, de más de 90 metros de longitud, con capacidad para transportar 10 toneladas de carga de pago, mantenerse en el aire durante cinco días, volar a 6100 metros de altura y recorrer hasta 4000 millas. Está previsto que el Airlander 10 entre en servicio en 2026. Algunas empresas ya anuncian lujosos viajes con este zepelín a lugares exóticos. Serán muy costosos, pero da la impresión de que siempre hay gente dispuesta a gastar dinero en extravagancias ociosas, como sobrevolar los polos, el desierto o la Reserva Natural del Masai Mara. Quizá lo más sorprendente no es que el Airlander 10 haya interesado a los organizadores de estos viajes tan exclusivos, sino que la filial de Iberia, Air Nostrum, tenga previsto adquirir 10 unidades para servir rutas de corto recorrido con una configuración de cabina con unos 100 pasajeros, a partir de 2026, lo que no tiene nada que ver con el turismo de lujo. Que los futuros Airlander 10 se ganen o no la confianza de los viajeros en estas rutas dependerá de su capacidad para prestar servicios con regularidad, al margen de los caprichos del viento, si es que su escasa velocidad (120 km/h) puede compensarse con el disfrute de unas hermosas vistas. En cuanto a las ventajas ecológicas que se le atribuyen es difícil entender su procedencia ya que equipará cuatro motores diésel de 242 kw de potencia cada uno, la mitad de la potencia de los que lleva un ATR 72 capaz de transportar casi a los mismos pasajeros, cuatro veces más de prisa. El fabricante sugiere que los futuros dirigibles se propulsarán con motores eléctricos; tendrán que ser mucho más grandes y bastante más caros para acarrear las baterías y ese dirigible eléctrico, si es que se llega a fabricar, no se parecerá en nada al que vuela con keroseno. Traer de nuevo los dirigibles al transporte regular de pasajeros no deja de ser una apuesta arriesgada.

Breve historia de la aviación comercial (2)

Zepelines y aeronaves acuáticas

En 1909, cuando Blériot voló de Calais a Dover, los aviones no reunían las condiciones necesarias para prestar servicios de transporte aéreo de forma regular. En Alemania, el conde Ferdinand von Zeppelin llevaba más de diez años trabajando en el desarrollo de dirigibles de cuerpo rígido para vendérselos al ejército y después de fracasar en ese intento con su último zepelín, el LZ6, lo modificó para que pudiese transportar 20 pasajeros en una cabina, que parecía un vagón de tren, montada bajo el voluminoso cuerpo del dirigible.

La empresa que inauguró el transporte aéreo comercial fue la sociedad alemana Deutsche Luftschiffahrts-Aktiengesellschaft (DELAG) en 1910, con zepelines. Entre 1910 y 1914, unos 34 000 pasajeros utilizaron sus servicios, muchos de ellos en vuelos de demostración, pero más de 10 000 pagaron el billete y no hubo que lamentar ningún accidente con víctimas mortales. DELAG se creó para comercializar los dirigibles de cuerpo rígido que fabricaba la empresa del conde Zeppelin.

Muchos militares creían que aquellos impresionantes aparatos serían más útiles en la guerra que los aviones. No fue así, su lentitud y tamaño los convirtieron en un blanco fácil para la artillería y la aviación.

Cuando finalizó la Gran Guerra, DELAG reanudó en 1919 los servicios de transporte aéreo. Con un nuevo modelo, LZ-120 Bodensee, la empresa empezó a volar de Friedrichshafen a Berlín con escala en Múnich. El dirigible alojaba en la cabina a 26 pasajeros en cómodos butacones y estaba equipado con una pequeña cocina en la que se preparaban platos calientes. En 1920 DELAG incorporó a su flota otro zepelín, el LZ-121 Nordstern, para volar a Estocolmo, pero los vencedores de la Gran Guerra decidieron incautarle a la sociedad alemana sus dos dirigibles: el Bodensee se lo quedó Italia y el Nordstern Francia.

Hasta que no se aliviaron las restricciones impuestas por los aliados a la fabricación de dirigibles de cuerpo rígido en Alemania, DELAG permaneció inactiva. En 1928, un nuevo zepelín, el LZ 127 Graf Zeppelin tomó el relevo para iniciar el transporte aéreo comercial a través de los océanos. Este espléndido dirigible recibió el nombre de la hija del conde Zeppelin, en memoria del insigne emprendedor que había fallecido hacía once años. Durante nueve años, de 1928 a 1937, el LZ-127 Graf Zeppelin efectuó 590 vuelos y transportó 34 000 pasajeros sin que ninguno de ellos perdiese la vida. Viajó al Ártico, cruzó el Atlántico Norte y el Sur en numerosas ocasiones y dio la vuelta al mundo. Medía 250 metros de longitud, pesaba al despegar unas 87 toneladas, podía recorrer 10 000 kilómetros sin repostar y navegaba a unos 117 kilómetros por hora. Transportaba en cómodas cabinas a 20 pasajeros, atendidos por una tripulación de 36 personas. El lujo que disfrutaban los viajeros se combinaba, en algunas ocasiones, con fuertes emociones, como las que experimentaron durante el vuelo inaugural, poco antes de aterrizar en Nueva York, cuando un equipo de tripulantes tuvo que salir en pleno vuelo a efectuar reparaciones en una de las góndolas; el vuelo de Friedrichshafen a Nueva York duró 111 horas y 44 minutos mientras que el regreso, gracias al viento favorable, lo hizo en 71 horas y 49 minutos. Para acortar el tiempo de viaje hacia el oeste a través del Atlántico Norte, con los vientos dominantes en contra, DELAG necesitaba un dirigible con motores más potentes que los del Graf Zeppelin. Como la sociedad carecía de recursos para financiarlo se vio obligada a solicitar la ayuda del Gobierno que se la proporcionó y se convirtió en el principal accionista.

En 1936, la empresa que sustituyó a la antigua DELAG, controlada por el gobierno nazi, estrenó el LZ-129 Hindenburg, un dirigible que podía transportar hasta 72 pasajeros, acompañados de una tripulación de 52 personas. Sus motores, más potentes, permitían acortar el viaje a través del Atlántico Norte y sustituyó al Graf Zeppelin en esta ruta. A bordo estaba equipado con lujosas cabinas, salones, sala de escritura, comedor, bar, sala de fumadores y miradores panorámicos; a los pasajeros se les ofrecía un servicio extraordinariamente refinado. En 1937 el Hindenburg representaba el último estado del arte en cuanto al transporte aéreo comercial en vuelos de largo recorrido.

Desde el inicio de las operaciones de la empresa DELAG hasta 1937, los aviones habían evolucionado mucho y ya nadie pensaba que los dirigibles competirían con los aviones en rutas de menos de mil kilómetros, pero aún les quedaba un sitio que ocupar en trayectos sobre los océanos y de muy largo recorrido.

El 6 de mayo de 1937, el Hindenburg con 36 pasajeros y una tripulación de 61 personas, se aproximaba majestuosamente al aeródromo de Lakehurst, Nueva Jersey. La travesía había sido difícil y acumulaba unas doce horas de retraso por culpa del viento. A bordo, el capitán Max Pruss, que en ese momento dirigía las operaciones desde el puesto de mando, estaba pendiente de las maniobras y miraba los instrumentos. El comandante Ernst Lehmann, director gerente de la empresa, seguía el vuelo desde la cabina de pasajeros. El Hindenburg estaba a punto de completar su primer viaje a Nueva York de aquel año, aunque durante la temporada del año anterior ya había efectuado nueve. Cuando pasó por Manhatann, unos pequeños aviones salieron al encuentro del gigantesco dirigible. Vistos desde tierra parecían moscas revoloteando alrededor del monstruo de duraluminio. En las calles neoyorquinas, taxis y autobuses hicieron sonar sus bocinas y la gente se paraba para levantar la cabeza y contemplar al Hindenburg. Eran las 04:00 horas de la tarde y Pruss estimó que las condiciones meteorológicas no eran buenas, así que decidió retrasar el aterrizaje un par de horas. A las 06:12 horas la tormenta ya había pasado, soplaba un viento de ocho nudos del sureste en la superficie y Pruss anunció al pasaje que no tardarían en aterrizar. El comandante Lehmann, que hasta entonces disfrutaba del paisaje desde la cabina de pasajeros, se dirigió al puesto de control, donde se hallaba Pruss. A las 07:21 el primer cable de anclaje cayó a tierra y el personal del aeropuerto amarró las líneas de babor y estribor. Tanto Pruss como Lehmann quedaron satisfechos con el aterrizaje, aunque durante el tramo final la maniobra fue bastante brusca. El radio telegrafió un mensaje al Graf Zeppelin, que entonces volaba de Argentina a Alemania, para notificarle que habían aterrizado en Lakehurst sin ningún problema. Todo estaba bien, en apariencia, pero cuando los pasajeros se encontraban ya a punto de desembarcar se produjo una pequeña llamarada cerca del timón vertical de dirección y el fuego se propagó con rapidez: al cabo de 34 segundos el Hindenburg se desplomó envuelto en llamas. El personal de tierra tuvo tiempo de apartarse, pero el desastre le costó la vida a 35 de las 97 personas que viajaban a bordo. El capitán Pruss logró salvarse, aunque ningún miembro de la tripulación abandonó su puesto de trabajo hasta que la totalidad del pasaje evacuó la aeronave. El comandante Lehmann falleció a causa de las quemaduras. La noticia del accidente y la foto del incendio aparecerían en la primera página de casi todos los periódicos del mundo. La fuga de hidrógeno, un gas extraordinariamente volátil e inflamable, a través de alguna grieta producida por las tensiones de la abrupta maniobra de aproximación, junto con una chispa generada al descargase la electricidad estática acumulada en el cuerpo del dirigible, pudieron ser, a juicio de los investigadores, la causa del accidente. La sustitución del hidrógeno de los zepelines, por helio, que no es inflamable, era inviable ya que Estados Unidos, único país que entonces podía suministrarlo, se negó a proporcionárselo a Alemania. El gobierno de Hitler decidió interrumpir las operaciones de los dos grandes zepelines de la empresa que ya nunca volverían a reanudarse.

En 1937, finalizó la historia de los dirigibles como aeronaves para prestar servicios comerciales de transporte aéreo, que había comenzado veintisiete años antes. Durante aquellos años, muchos creyeron que los zepelines representaban el futuro del transporte aéreo de muy largo recorrido y sobre el mar. En España, Emilio Herrera elaboró un estudio en 1918, que presentó al rey Alfonso XIII, para establecer conexiones aéreas regulares entre España y América con dirigibles. Contactó con la empresa del conde Zeppelin y a principios de 1922 visitó, con representantes de la sociedad alemana, varios países sudamericanos en busca de apoyos locales para su proyecto. Enlazar Sevilla con Buenos Aires con dirigibles, se convirtió en el primer objetivo de Herrera que elaboró unos magníficos mapas con la información meteorológica necesaria para el vuelo. En septiembre de 1922 creó la Compañía Transaérea Colón, con la participación de Jorge Loring y el fabricante alemán de zepelines, en la que actuó como interventor del Estado. El proyecto de la sociedad no logró atraer capital suficiente para llevarla a buen término y en 1928, Herrera trató de que la Administración española firmara algún acuerdo de colaboración con DELAG. El ingeniero español voló en el Graf Zeppelin, pero no consiguió sus propósitos de involucrar al Gobierno de su país en el proyecto de crear una empresa de transporte aéreo con grandes dirigibles.

El aviador español, Ramón Franco, no compartía la visión que tenía Herrera de los zepelines. Ramón, piloto militar de hidroaviones, estaba convencido de que el futuro de la aviación de transporte de largo recorrido, sobre los mares, estaba en los hidroaviones. Su espíritu aventurero lo llevó a ser el primero en cruzar el Atlántico Sur, de Palos al Plata, con un hidroavión Dornier Super Val, el Plus Ultra, en 1926. Aquel vuelo lo convertiría en uno de los pilotos más famosos de su época y al hombre más aclamado de su país. Después proyectó volar alrededor del mundo y la aventura se quedó en un frustrado vuelo a Nueva York, que termino cerca de las islas Azores con un amerizaje forzoso al quedarse sin combustible. Ramón Franco y su tripulación estuvieron a punto de perecer en el océano, pero un buque de la Armada británica logró rescatarlos. Para que el Gobierno le financiara aquellos vuelos, Ramón los justificó como si fueran el prólogo necesario de la apertura de enlaces aéreos regulares que conectaran España con esos destinos americanos. Él estaba convencido de que los hidroaviones serían las máquinas destinadas en un futuro próximo a sobrevolar los océanos.

El aviador Ramón Franco no andaba desencaminado y los hidroaviones, durante la década de los años 1930, prestaron servicios de transporte aéreo de largo recorrido sobre los océanos, de forma regular. En Europa, los fabricantes Short, Dornier y Lioré et Olivier, proporcionaron hidroaviones a las aerolíneas Imperial Airways en Gran Bretaña, Lufthansa en Alemania y Air France en Francia, respectivamente, para establecer rutas de muy largo recorrido y comunicar por vía aérea las metrópolis con las ciudades que más interesaban por motivos políticos y comerciales a estos países. Sin embargo, fue en Estados Unidos donde la aerolínea fundada por Juan Trippe, Pan American, en mayor medida empleó los hidroaviones.

Juan Trippe y su asesor, el piloto que voló por primera vez de Nueva York a París en solitario, Charles Lindbergh, querían un hidroavión robusto, con cuatro motores y de gran tamaño para cubrir las rutas que Pan Am pretendía extender por el Caribe, Centroamérica y Sudamérica. El aparato, S-40, lo fabricó Sikorsky y lo bautizó la primera dama de Estados Unidos, Lou Hoover, con una botella de agua del Caribe porque en 1931 el consumo de alcohol estaba prohibido en aquel país. El hidroavión recibió el nombre de American Clipper y fue el primero de una serie de aeronaves que se conocerían como los clipper porque emulaban a los legendarios veleros de una época anterior y por su aspecto parecían barcos con alas. Charles Lindbergh pilotó el avión de Miami a Barranquilla en lo que fue la primera etapa del vuelo inaugural del S-40 que se prolongó hasta Cristóbal en Panamá.

El S-40 podía transportar 38 pasajeros a unas 500 millas o 24 hasta 900. Era cómodo, lujoso y uno de los aviones más grandes que se fabricaba en aquella época. Pan Am compró tres aparatos, con la base en Miami, y con ellos extendió sus rutas hasta Buenos Aires. A Charles Lindbergh aquel hidroavión de madera le parecía un bosque volador, era lento y Pan Am tampoco estaba satisfecha con sus prestaciones.

Para sustituir a los S-40 Trippe encargó a su jefe de ingeniería, Andre Priester, que escribiera las especificaciones de un nuevo hidroavión. Priester, un hombre con experiencia que había trabajado en la aerolínea de los Países Bajos, KLM, estableció que el avión tendría que volar 3000 millas para llegar a Europa o a Hawái con una carga de pago igual a su propio peso. Trippe encargó tres aviones, cuyas prestaciones se aproximaran tanto como fuera posible a los requerimientos formulados por Priester, a dos fabricantes: Sikorsky y Glenn L. Martin. Sykorski construyó a partir del S-40 una variante, el S-42 que distaba mucho de lo que Pan Am deseaba y Glenn Martin, con un año de retraso, fabricó un nuevo modelo, el M-130, con mejores prestaciones.

Para reemplazar al S-40, Sikorsky desarrolló el S-42, más rápido y con capacidad para transportar 38 pasajeros a unas 1200 millas de distancia, en condiciones normales, aunque se organizó el pasaje en tres cabinas con ocho butacones en cada una de ellas, porque los vuelos se efectuaban de día y estos clippers no llevaban literas. Abandonó la madera y el avión lo construyó con duraluminio. Este hidroavión empezó a volar las líneas de Pan Am en 1934. Con el S-42 se tardaba 5 días en viajar de Miami a Buenos Aires, en vez de 8 como ocurría con el S-40.

El 9 de octubre de 1935, Glenn Martin hizo entrega de su hidroavión a Pan Am: el China Clipper. Aunque de Californa a Honolulú solamente podía llevar ocho pasajeros y eso condicionaba el volumen de tráfico de las rutas que la empresa trazó sobre el Pacífico, el M-130 permitió a la aerolínea extender sus operaciones hasta China y la imagen del hidroavión transoceánico dio la vuelta al mundo.

Juan Trippe quería un avión todavía más grande para sus rutas de largo recorrido sobre los océanos. Glenn Martin, Sikorsky y Boeing compitieron en un concurso organizado por Pan Am, dotado con un premio de 50 000 dólares, para diseñar el nuevo hidroavión de la aerolínea. Boeing fue el vencedor. Glenn Martin se enfureció: con los tres M-130 que había suministrado a Pan Am perdió dinero y esperaba una compensación, ya que para la aerolínea había sido una adquisición ventajosa y de gran impacto publicitario. En 1936 Trippe firmó con Boeing el contrato para la adquisición de seis Boeing 314 clippers.

Con el Boeing 314 los clippers de Pan Am llegaron al cénit de su corta historia y también al ocaso. Con una longitud de 32 metros y una anchura similar a la de los aviones de fuselaje ancho —aún pasarían muchos años antes de que se fabricasen— propulsados por cuatro motores Wright de 1600 hp que les permitía mantener una velocidad de crucero de 303 kilómetros por hora, podían transportar a unos 66 pasajeros en cómodos asientos o hasta 36 con literas, a distancias que, en función de la carga y el número de pasajeros que llevara, oscilaban entre 5930 y 7886 kilómetros. El hidroavión tenía dos cubiertas, la superior para la tripulación y la inferior, que ocupaba el pasaje, estaba dividida en cinco compartimentos, un amplio salón convertible en comedor y en la parte de atrás llevaba una suite nupcial. Por el interior de las alas, a través de pasillos, el personal de mantenimiento tenía acceso a los motores, de forma que era posible repararlos en vuelo, una tarea que se hacía con relativa frecuencia ya que de 1939 a 1941, se efectuaron 431 operaciones de este tipo. El servicio a bordo era extraordinario, con un menú exquisito, servido en mesas con manteles de lino, cubertería de plata y vajilla de porcelana. Las literas eran muy cómodas, aunque algunos pasajeros se quejaban del calor que hacía en las superiores y el frío en las de abajo, pero la mayoría coincidía en que, normalmente, se movían menos que en los trenes.

El Boeing 314 permitió que Pan Am inaugurase sus dos primeras rutas europeas, de Nueva York a Londres y Marsella en 1939 y extender su red por el Pacífico.

El 7 de diciembre de 1941 el capitán Robert Ford, al mando del Pacific Clipper de Pan Am, volaba de Nouméa (Australia) a Auckland (Nueva Zelanda). Hacía seis días que habían salido de San Francisco. Todo iba bien cuando el operador de radio, John Poindexter, muy excitado, le pasó un mensaje urgente: Pearl Harbor había sido atacado por los japoneses; Estados Unidos estaba en guerra. Ford y todo el personal en la cabina pensaron lo mismo: la ruta de vuelta a San Francisco estaba cerrada. El Pacific Clipper aterrizó en Auckland y durante una semana, Ford, aguardó instrucciones de su empresa. Por fin, le llegaron de las oficinas centrales de Pan Am en Nueva York: tenía que regresar a Estados Unidos volando hacia el oeste. Eso significaba recorrer más de 40 000 kilómetros, dar la vuelta al mundo. Ford no llevaba suficiente dinero, ni mapas, ni él ni su tripulación conocían ninguno de los territorios que tendrían que sobrevolar. Regresaron a Nouméa con el personal destacado de Pan Am en Auckland y de allí volaron hasta Gladstone (Australia). Ford logró que un empleado de un banco le adelantara 500 dólares y con aquel dinero se las arreglaron para regresar. Fue un largo viaje, de Gladstone a Darwin en el norte de Australia, y de allí a Nueva York, con escalas en Surabaya (Indonesia), Trincomalee (Sri Lanka), Baréin (Bahrein), Jartúm (Sudán), Kinsasa (antes Leopoldville, en el Congo) y Natal (Brasil) no exentas de incidencias, como el peligroso encuentro con un submarino. Cuando llegaron a Nueva York, el seis de enero de 1942, antes de que se les autorizara el amerizaje tuvieron que esperar una hora. El Pacific Clipper a lo largo de aquel viaje batió varios récords, entre ellos el de ser el primer avión comercial que dio la vuelta al mundo.

Durante la Segunda Guerra Mundial, los hidroaviones comerciales fueron militarizados y cuando terminó, el alcance máximo de los grandes cuatrimotores terrestres era similar al de los hidroaviones, a juicio de los pilotos eran aviones más seguros y casi todos los destinos contaban con pistas de aterrizaje, cuya ausencia justificó en gran medida el uso inicial de las aeronaves acuáticas. El California Clipper fue el último que retiró Pan Am, en 1946, después de haber recorrido más de un millón de millas.

Hidroaviones y dirigibles compitieron con los aviones terrestres para transportar pasajeros en las rutas comerciales de largo recorrido y fueron los primeros en hacerlo, aunque tuvieron una vida relativamente corta.

¿Quién ganará esta guerra en la aviación comercial?

Esta foto es una maqueta del avión de largo alcance que hace ya algunos años empezó a desarrollar Rusia en colaboración con China.

Hoy, dos de cada tres aviones de la flota de las aerolíneas rusas son Boeing (332 en total) o Airbus (304). La interrupción del suministro de repuestos y prestación de servicios a estos transportistas, derivada de la situación política, supone un gravísimo inconveniente para la seguridad y continuidad de los vuelos de la flota rusa. Es una medida que tendrá sus consecuencias a medio plazo. Sin embargo, a muy corto plazo, los peores efectos se producirán por la cancelación de los contratos de alquiler a que se verán forzadas las compañías de leasing ya que las aeronaves, sin el adecuado soporte, perderán los seguros.

La Unión Europea ha establecido nuevas regulaciones que obligarán a los arrendadores a cancelar sus contratos de leasing antes del 28 de marzo de 2022. Más de la mitad de los aviones de la flota rusa están alquilados a entidades extranjeras como AerCap Holdings NV, con sede en Dublín, con 152 aeronaves de su propiedad en Rusia y Ucrania por un valor de unos 2500 millones de dólares. El segundo arrendador de aviones extranjero en Rusia, con una exposición de 36 aparatos, es SMBC Aviation Capital, una filial de la sociedad japonesa Sumitomo Mitsui Financial Group y BOC Aviation, otro arrendador de Hong Kong, tiene alquilados 18 aviones en Rusia. Las medidas de la Unión Europea afectan por igual a las compañías de leasing europeas, americanas y asiáticas.

En cuestión de días, los arrendadores extranjeros van a solicitar a las aerolíneas rusas la terminación de los contratos de alquiler y la devolución de las aeronaves de los fabricantes Boeing y Airbus. La pérdida de un tercio de la flota de aviones podría suponer una catástrofe para la aviación comercial rusa, en condiciones normales. Pero, quizá no sea así dada la situación actual. Al mismo tiempo, el tráfico aéreo ruso de pasaje con Europa y Norteamérica se interrumpirá, por lo que a las aerolíneas de aquel país le sobrarán aviones y los efectos negativos del cierre del espacio aéreo se verán paliados por la oportunidad de devolver aviones a los arrendadores. En Rusia, el mercado de transporte aéreo doméstico se ha recuperado por completo, pero no el internacional.

Nuestra aviación comercial —me refiero a toda, menos la rusa— va a encontrarse con un exceso de flota inactiva de centenares de aeronaves que hasta ahora volaban para las aerolíneas rusas, con serios problemas para cobrar deudas debido a las limitaciones impuestas al SWIFT y aviones de los arrendadores en Rusia, difíciles de embargar o simplemente nacionalizados por orden de Putin.

A las posibles pérdidas de activos de las compañías de leasing por nacionalizaciones y al exceso de aeronaves en el mercado originado por las que se recuperen, habrá que añadir que las aerolíneas europeas perderán un tráfico de varias decenas de millones de pasajeros con Rusia. Y aquí no se acaban las desgracias. Todos los días hay unas 90 operaciones de transportistas europeos que sobrevuelan Rusia que, con más de 17 millones de kilómetros cuadrados, es el país más grande del mundo y paso forzoso en la ruta directa que une las principales ciudades de Europa con Asia. Evitar Rusia alarga el vuelo de Helsinki a Tokío en más de 3700 kilómetros (Finair ya ha cancelado sus vuelos con Asia) y el de Frankfurt con Pekín en 1300 kilómetros. Estos cambios de ruta añadirán un consumo de centenares de toneladas de combustible todos los días, a la cuenta del transporte aéreo europeo.

A corto plazo todas estas medidas configuran un panorama que no parece muy bueno, aunque tampoco desastroso, para la aviación comercial rusa, pero ¿en qué gana la nuestra?

A medio y largo plazo, si las cosas no cambian: Boeing y Airbus perderán definitivamente el mercado de aviones ruso que hoy dominan; los fabricantes de aquel país, Irkut y Sukhoy, recibirán todavía más pedidos; y Rusia y China acelerarán el desarrollo de su programa de avión de largo recorrido (CRAIC CR929). Justo lo que Putin quiere.